skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Authentication of edible oils using an infrared spectral library and digital sample sets: A feasibility study
Abstract A potential method to determine whether two varieties of edible oils can be differentiated by Fourier transform infrared (FTIR) spectroscopy is proposed using digitally generated data of adulterated edible oils from an infrared (IR) spectral library. The first step is the evaluation of digitally blended data sets. Specifically, IR spectra of adulterated edible oils are computed from digitally blending experimental data of the IR spectra of an edible oil and the corresponding adulterant using the appropriate mixing coefficients to achieve the desired level of adulteration. To determine whether two edible oils can be differentiated by FTIR spectroscopy, pure IR spectra of the two edible oils are compared with IR spectra of two edible oils digitally mixed using a genetic algorithm for pattern recognition to solve a ternary classification problem. If the IR spectra of the two edible oils and their binary mixtures are differentiable from principal component plots of the spectral data, then differences between the IR spectra of these two edible oils are of sufficient magnitude to ensure that a reliable classification by FTIR spectroscopy can be obtained. Using this approach, the feasibility of authenticating edible oils such as extra virgin olive oil (EVOO) directly from library spectra is demonstrated. For this study, both digital and experimental data are combined to generate training and validation data sets to assess detection limits in FTIR spectroscopy for the adulterants.  more » « less
Award ID(s):
2003867 2003839
PAR ID:
10392290
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Chemometrics
Volume:
37
Issue:
3
ISSN:
0886-9383
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present four unique prediction techniques, combined with multiple data pre-processing methods, utilizing a wide range of both oil types and oil peroxide values (PV) as well as incorporating natural aging for peroxide creation. Samples were PV assayed using a standard starch titration method, AOCS Method Cd 8-53, and used as a verified reference method for PV determination. Near-infrared (NIR) spectra were collected from each sample in two unique optical pathlengths (OPLs), 2 and 24 mm, then fused into a third distinct set. All three sets were used in partial least squares (PLS) regression, ridge regression, LASSO regression, and elastic net regression model calculation. While no individual regression model was established as the best, global models for each regression type and pre-processing method show good agreement between all regression types when performed in their optimal scenarios. Furthermore, small spectral window size boxcar averaging shows prediction accuracy improvements for edible oil PVs. Best-performing models for each regression type are: PLS regression, 25 point boxcar window fused OPL spectral information RMSEP = 2.50; ridge regression, 5 point boxcar window, 24 mm OPL, RMSEP = 2.20; LASSO raw spectral information, 24 mm OPL, RMSEP = 1.80; and elastic net, 10 point boxcar window, 24 mm OPL, RMSEP = 1.91. The results show promising advancements in the development of a full global model for PV determination of edible oils. 
    more » « less
  2. A new method to determine the make and model of a vehicle from an automotive paint sample recovered at the crime scene of a vehicle-related fatality such as a hit-and-run using Raman microscopy has been developed. Raman spectra were collected from 118 automotive paint samples from six General Motors (GM) vehicle assembly plants to investigate the discrimination power of Raman spectroscopy for automotive clearcoats using a genetic algorithm for pattern recognition that incorporates model inference and sample error in the variable selection process. Each vehicle assembly plant pertained to a specific vehicle model. The spectral region between 1802 and 697 cm–1was found to be supportive of the discrimination of these six GM assembly plants. By comparison, only one of the six automotive assembly plants could be differentiated from the other five assembly plants using Fourier transform infrared spectroscopy (FT-IR), which is the most widely used analytical method for the examination of automotive paint) and the genetic algorithm for pattern recognition. The results of this study indicate that Raman spectroscopy in combination with pattern recognition methods offers distinct advantages over FT-IR for the identification and discrimination of automotive clearcoats. 
    more » « less
  3. Fourier-transform infrared spectroscopy (FTIR) is a powerful analytical method not only for the chemical identification of solid, liquid, and gas species but also for the quantification of their concentration. However, the chemical quantification capability of FTIR is significantly hindered when the analyte is surrounded by a strong IR absorbing medium, such as liquid solutions. To overcome this limit, here we develop an IR fiber microprobe that can be inserted into a liquid medium and obtain full FTIR spectra at points of interest. To benchmark this endoscopic FTIR method, we insert the microprobe into bulk water covering a ZnSe substrate and measure the IR transmittance of water as a function of the probe–substrate distance. The obtained vibrational modes, overall transmittance vs z profiles, quantitative absorption coefficients, and micro z-section IR transmittance spectra are all consistent with the standard IR absorption properties of water. The results pave the way for endoscopic chemical profiling inside bulk liquid solutions, promising for applications in many biological, chemical, and electrochemical systems. 
    more » « less
  4. The aim of this work was to study the applicability of infrared spectroscopy combined with machine learning techniques to evaluate the uptake and distribution of gold nanoparticles (AuNPs) and single-walled carbon nanotubes (CNTs) in Cicer arietinum L. (chickpea). Obtained spectral data revealed that the uptake of AuNPs and CNTs by the C. arietinum seedlings’ root resulted in the accumulation of AuNPs and CNTs at stem and leaf parts, which consequently led to the heterogeneous distribution of nanoparticles. principal component analysis and support vector machine classification were applied to assess its usefulness for evaluating the results obtained using the attenuated total reflectance-Fourier transform infrared spectroscopy method of C. arietinum plant grown at different conditions. Specific wavenumbers that could classify the different nanoparticle constituents of C. arietinum plant extracts according to their ATR-FTIR spectra were identified within three specific regions: 450–503 cm−1, 750–870 cm−1, and 1022–1218 cm−1, based on larger PCA loadings of C. arietinum ATR-FTIR spectra with distinct spectral differences between samples of interest. The current work paves a path to the future fabrication strategies for AuNPs and single-walled CNTs via plant-based routes and highlights the diversity of the applications of these materials in bio-nanotechnology. These results indicate the importance of family-plant selection, choice of methods, and pathways for the efficient biomolecule delivery, drug cargo, and optimal conditions in the wide spectrum of bioapplications. 
    more » « less
  5. Coherent multidimensional spectroscopy provides experimental access to molecular structure and subpicosecond dynamics in solution. Dynamics are typically inferred from the evolution of lineshapes over a function of waiting time. Numerous spectral analysis methods, such as center/nodal line slope, have been developed to extract these dynamics. However, the extracted dynamics can depend heavily on subjective choices, such as the region selected for CLS analysis or the chosen models. In this study, we introduce a novel approach to extracting dynamics from ultrafast two-dimensional infrared (2D IR) spectra by using dynamic mode decomposition (DMD). As a data-driven method, DMD directly extracts spatiotemporal structures from the complex 2D IR spectra. We evaluated the performance of DMD in simulated and experimental spectra containing overlapped peaks. We show that DMD can retrieve the dynamics of overlapped transitions and cross peaks that are typically challenging to extract with traditional methods. In addition, we demonstrate that combining conditional generative adversarial neural networks with DMD can recover dynamics even at low signal-to-noise ratios. DMD methods do not require preliminary assumptions and can be readily extended to other multidimensional spectroscopies. 
    more » « less