We study robust convex quadratic programs where the uncertain problem parameters can contain both continuous and integer components. Under the natural boundedness assumption on the uncertainty set, we show that the generic problems are amenable to exact copositive programming reformulations of polynomial size. These convex optimization problems are NP-hard but admit a conservative semidefinite programming (SDP) approximation that can be solved efficiently. We prove that the popular approximate S-lemma method—which is valid only in the case of continuous uncertainty—is weaker than our approximation. We also show that all results can be extended to the two-stage robust quadratic optimization setting if the problem has complete recourse. We assess the effectiveness of our proposed SDP reformulations and demonstrate their superiority over the state-of-the-art solution schemes on instances of least squares, project management, and multi-item newsvendor problems. 
                        more » 
                        « less   
                    
                            
                            Efficient Representation of Numerical Optimization Problems for SNARKs
                        
                    
    
            This paper introduces Otti, a general-purpose com- piler for (zk)SNARKs that provides support for numerical op- timization problems. Otti produces efficient arithmetizations of programs that contain optimization problems including linear programming (LP), semi-definite programming (SDP), and a broad class of stochastic gradient descent (SGD) instances. Numerical optimization is a fundamental algorithmic building block: applications include scheduling and resource allocation tasks, approximations to NP-hard problems, and training of neural networks. Otti takes as input arbitrary programs written in a subset of C that contain optimization problems specified via an easy-to-use API. Otti then automatically produces rank-1 constraint satisfiability (R1CS) instances that express a succinct transformation of those programs. Correct execution of the transformed program implies the optimality of the solution to the original optimization problem. Our evaluation on real benchmarks shows that Otti, instantiated with the Spartan proof system, can prove the optimality of solutions in zero-knowledge in as little as 100 ms—over 4 orders of magnitude faster than existing approaches. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10392347
- Date Published:
- Journal Name:
- USENIX Security Symposium
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We study two-stage stochastic optimization problems with random recourse, where the coefficients of the adaptive decisions involve uncertain parameters. To deal with the infinite-dimensional recourse decisions, we propose a scalable approximation scheme via piecewise linear and piecewise quadratic decision rules. We develop a data-driven distributionally robust framework with two layers of robustness to address distributional uncertainty. We also establish out-of-sample performance guarantees for the proposed scheme. Applying known ideas, the resulting optimization problem can be reformulated as an exact copositive program that admits semidefinite programming approximations. We design an iterative decomposition algorithm, which converges under some regularity conditions, to reduce the runtime needed to solve this program. Through numerical examples for various known operations management applications, we demonstrate that our method produces significantly better solutions than the traditional sample-average approximation scheme especially when the data are limited. For the problem instances for which only the recourse cost coefficients are random, our method exhibits slightly inferior out-of-sample performance but shorter runtimes compared with a competing approach.more » « less
- 
            Abstract In this paper, we study distributionally risk-receptive and distributionally robust (or risk-averse) multistage stochastic mixed-integer programs (denoted by DRR- and DRO-MSIPs). We present cutting plane-based and reformulation-based approaches for solving DRR- and DRO-MSIPs without and with decision-dependent uncertainty to optimality. We show that these approaches are finitely convergent with probability one. Furthermore, we introduce generalizations of DRR- and DRO-MSIPs by presenting multistage stochastic disjunctive programs and algorithms for solving them. These frameworks are useful for optimization problems under uncertainty where the focus is on analyzing outcomes based on multiple decision-makers’ differing perspectives, such as interdiction problems that are attacker-defender games having non-cooperative players. To assess the performance of the algorithms for DRR- and DRO-MSIPs, we consider instances of distributionally ambiguous multistage maximum flow and facility location interdiction problems that are important in their own right. Based on our computational results, we observe that the cutting plane-based approaches are 2800% and 2410% (on average) faster than the reformulation-based approaches for the foregoing instances with distributional risk-aversion and risk-receptiveness, respectively. Additionally, we conducted out-of-sample tests to showcase the significance of the DRR framework in revealing network vulnerabilities and also in mitigating the impact of data corruption.more » « less
- 
            This paper studies how to train machine-learning models that directly approximate the optimal solutions of constrained optimization problems. This is an empirical risk minimization under constraints, which is challenging as training must balance optimality and feasibility conditions. Supervised learning methods often approach this challenge by training the model on a large collection of pre-solved instances. This paper takes a different route and proposes the idea of Primal-Dual Learning (PDL), a self-supervised training method that does not require a set of pre-solved instances or an optimization solver for training and inference. Instead, PDL mimics the trajectory of an Augmented Lagrangian Method (ALM) and jointly trains primal and dual neural networks. Being a primal-dual method, PDL uses instance-specific penalties of the constraint terms in the loss function used to train the primal network. Experiments show that, on a set of nonlinear optimization benchmarks, PDL typically exhibits negligible constraint violations and minor optimality gaps, and is remarkably close to the ALM optimization. PDL also demonstrated improved or similar performance in terms of the optimality gaps, constraint violations, and training times compared to existing approaches.more » « less
- 
            In this paper, we consider the problem of dynamic programming when supremum terms appear in the objective function. Such terms can represent overhead costs associated with the underlying state variables. Specifically, this form of optimization problem can be used to represent optimal scheduling of batteries such as the Tesla Powerwall for electrical consumers subject to demand charges - a charge based on the maximum rate of electricity consumption. These demand charges reflect the cost to the utility of building and maintaining generating capacity. Unfortunately, we show that dynamic programming problems with supremum terms do not satisfy the principle of optimality. However, we also show that the supremum is a special case of the class of forward separable objective functions. To solve the dynamic programming problem, we propose a general class of optimization problems with forward separable objectives. We then show that for any problem in this class, there exists an augmented-state dynamic programming problem which satisfies the principle of optimality and the solutions to which yield solutions to the original forward separable problem. We further generalize this approach to stochastic dynamic programming problems and apply the results to the problem of optimal battery scheduling with demand charges using a data-based stochastic model for electricity usage and solar generation by the consumer.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    