Optimization problems are ubiquitous in our societies and are present in almost every segment of the economy. Most of these optimization problems are NP-hard and computationally demanding, often requiring approximate solutions for large-scale instances. Machine learning frameworks that learn to approximate solutions to such hard optimization problems are a potentially promising avenue to address these difficulties, particularly when many closely related problem instances must be solved repeatedly. Supervised learning frameworks can train a model using the outputs of pre-solved instances. However, when the outputs are themselves approximations, when the optimization problem has symmetric solutions, and/or when the solver uses randomization, solutions to closely related instances may exhibit large differences and the learning task can become inherently more difficult. This paper demonstrates this critical challenge, connects the volatility of the training data to the ability of a model to approximate it, and proposes a method for producing (exact or approximate) solutions to optimization problems that are more amenable to supervised learning tasks. The effectiveness of the method is tested on hard non-linear nonconvex and discrete combinatorial problems.
more »
« less
Self-Supervised Primal-Dual Learning for Constrained Optimization
This paper studies how to train machine-learning models that directly approximate the optimal solutions of constrained optimization problems. This is an empirical risk minimization under constraints, which is challenging as training must balance optimality and feasibility conditions. Supervised learning methods often approach this challenge by training the model on a large collection of pre-solved instances. This paper takes a different route and proposes the idea of Primal-Dual Learning (PDL), a self-supervised training method that does not require a set of pre-solved instances or an optimization solver for training and inference. Instead, PDL mimics the trajectory of an Augmented Lagrangian Method (ALM) and jointly trains primal and dual neural networks. Being a primal-dual method, PDL uses instance-specific penalties of the constraint terms in the loss function used to train the primal network. Experiments show that, on a set of nonlinear optimization benchmarks, PDL typically exhibits negligible constraint violations and minor optimality gaps, and is remarkably close to the ALM optimization. PDL also demonstrated improved or similar performance in terms of the optimality gaps, constraint violations, and training times compared to existing approaches.
more »
« less
- Award ID(s):
- 2007095
- PAR ID:
- 10463205
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 37
- Issue:
- 4
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 4052 to 4060
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
afe reinforcement learning (RL) aims to learn policies that satisfy certain constraints before deploying them to safety-critical applications. Previous primal-dual style approaches suffer from instability issues and lack optimality guarantees. This paper overcomes the issues from the perspective of probabilistic inference. We introduce a novel Expectation-Maximization approach to naturally incorporate constraints during the policy learning: 1) a provable optimal non-parametric variational distribution could be computed in closed form after a convex optimization (E-step); 2) the policy parameter is improved within the trust region based on the optimal variational distribution (M-step). The proposed algorithm decomposes the safe RL problem into a convex optimization phase and a supervised learning phase, which yields a more stable training performance. A wide range of experiments on continuous robotic tasks shows that the proposed method achieves significantly better constraint satisfaction performance and better sample efficiency than baselines. The code is available at https://github.com/liuzuxin/cvpo-safe-rl.more » « less
-
In this work, we consider a distributed online convex optimization problem, with time-varying (potentially adversarial) constraints. A set of nodes, jointly aim to minimize a global objective function, which is the sum of local convex functions. The objective and constraint functions are revealed locally to the nodes, at each time, after taking an action. Naturally, the constraints cannot be instantaneously satisfied. Therefore, we reformulate the problem to satisfy these constraints in the long term. To this end, we propose a distributed primal-dual mirror descent-based algorithm, in which the primal and dual updates are carried out locally at all the nodes. This is followed by sharing and mixing of the primal variables by the local nodes via communication with the immediate neighbors. To quantify the performance of the proposed algorithm, we utilize the challenging, but more realistic metrics of dynamic regret and fit. Dynamic regret measures the cumulative loss incurred by the algorithm compared to the best dynamic strategy, while fit measures the long term cumulative constraint violations. Without assuming the restrictive Slater’s conditions, we show that the proposed algorithm achieves sublinear regret and fit under mild, commonly used assumptions.more » « less
-
This paper investigates methods for training parameterized functions for guiding state-space search algorithms. Existing work commonly generates data for training such guiding functions by solving problem instances while leveraging the current version of the guiding function. As a result, as training progresses, the guided search algorithm can solve more difficult instances that are, in turn, used to further train the guiding function. These methods assume that a set of problem instances of varied difficulty is provided. Since previous work was not designed to distinguish the instances that the search algorithm can solve from those that cannot be solved with the current guiding function, the algorithm commonly wastes time attempting and failing to solve many of these instances. In this paper, we improve upon these training methods by generating a curriculum for learning the guiding function that directly addresses this issue. Namely, we propose and evaluate a Teacher-Student Curriculum (TSC) approach where the teacher is an evolutionary strategy that attempts to generate problem instances of ``correct difficulty'' and the student is a guided search algorithm utilizing the current guiding function. The student attempts to solve the problem instances generated by the teacher. We conclude with experiments demonstrating that TSC outperforms the current state-of-the-art Bootstrap Learning method in three representative benchmark domains and three guided search algorithms, with respect to the time required to solve all instances of the test set.more » « less
-
Neural networks (NNs) have been extremely successful across many tasks in machine learning. Quantization of NN weights has become an important topic due to its impact on their energy efficiency, inference time and deployment on hardware. Although post-training quantization is well-studied, training optimal quantized NNs involves combinatorial non-convex optimization problems which appear intractable. In this work, we introduce a convex optimization strategy to train quantized NNs with polynomial activations. Our method leverages hidden convexity in twolayer neural networks from the recent literature, semidefinite lifting, and Grothendieck’s identity. Surprisingly, we show that certain quantized NN problems can be solved to global optimality provably in polynomial time in all relevant parameters via tight semidefinite relaxations. We present numerical examples to illustrate the effectiveness of our method.more » « less
An official website of the United States government

