skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Continuous Time Graph Processes with Known ERGM Equilibria: Contextual Review, Extensions, and Synthesis
Graph processes that unfold in continuous time are of obvious theoretical and practical interest. Particularly useful are those whose long-term behavior converges to a graph distribution of known form. Here, we review some of the conditions for such convergence, and provide examples of novel and/or known processes that do so. These include subfamilies of the well-known stochastic actor oriented models, as well as continuum extensions of temporal and separable temporal exponential family random graph models. We also comment on some related threads in the broader work on network dynamics, which provide additional context for the continuous time case.  more » « less
Award ID(s):
1826589
PAR ID:
10392399
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of mathematical sociology
ISSN:
0022-250X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Contagious processes on networks, such as spread of disease through physical proximity or information diffusion over social media, are continuous-time processes that depend upon the pattern of interactions between the individuals in the network. Continuous-time stochastic epidemic models are a natural fit for modeling the dynamics of such processes. However, prior work on such continuous-time models doesn’t consider the dynamics of the underlying interaction network which involves addition and removal of edges over time. Instead, researchers have typically simulated these processes using discrete-time approximations, in which one has to trade off between high simulation accuracy and short computation time. In this paper, we incorporate continuous-time network dynamics (addition and removal of edges) into continuous-time epidemic simulations. We propose a rejection-sampling based approach coupled with the well-known Gillespie algorithm that enables exact simulation of the continuous-time epidemic process. Our proposed approach gives exact results, and the computation time required for simulation is reduced as compared to discrete-time approximations of comparable accuracy. 
    more » « less
  2. We propose an analytic approach for the steady-state dynamics of Markov processes on locally tree-like graphs. It is based on time-translation invariant probability distributions for edge trajectories, which we encode in terms of infinite matrix products. For homogeneous ensembles on regular graphs, the distribution is parametrized by a single d×d×r^2 tensor, where r is the number of states per variable, and d is the matrix-product bond dimension. While the method becomes exact in the large-d limit, it typically provides highly accurate results even for small bond dimensions d. The d^2r^2 parameters are determined by solving a fixed point equation, for which we provide an efficient belief-propagation procedure. We apply this approach to a variety of models, including Ising-Glauber dynamics with symmetric and asymmetric couplings, as well as the SIS model. Even for small d, the results are compatible with Monte Carlo estimates and accurately reproduce known exact solutions. The method provides access to precise temporal correlations, which, in some regimes, would be virtually impossible to estimate by sampling. 
    more » « less
  3. Abstract Suppose we are given a system of coupled oscillators on an unknown graph along with the trajectory of the system during some period. Can we predict whether the system will eventually synchronize? Even with a known underlying graph structure, this is an important yet analytically intractable question in general. In this work, we take an alternative approach to the synchronization prediction problem by viewing it as a classification problem based on the fact that any given system will eventually synchronize or converge to a non-synchronizing limit cycle. By only using some basic statistics of the underlying graphs such as edge density and diameter, our method can achieve perfect accuracy when there is a significant difference in the topology of the underlying graphs between the synchronizing and the non-synchronizing examples. However, in the problem setting where these graph statistics cannot distinguish the two classes very well (e.g., when the graphs are generated from the same random graph model), we find that pairing a few iterations of the initial dynamics along with the graph statistics as the input to our classification algorithms can lead to significant improvement in accuracy; far exceeding what is known by the classical oscillator theory. More surprisingly, we find that in almost all such settings, dropping out the basic graph statistics and training our algorithms with only initial dynamics achieves nearly the same accuracy. We demonstrate our method on three models of continuous and discrete coupled oscillators—the Kuramoto model, Firefly Cellular Automata, and Greenberg-Hastings model. Finally, we also propose an “ensemble prediction” algorithm that successfully scales our method to large graphs by training on dynamics observed from multiple random subgraphs. 
    more » « less
  4. Complex systems are characterized by intricate interactions between entities that evolve dynamically over time. Accurate inference of these dynamic relationships is crucial for understanding and predicting system behavior. In this paper, we propose Regulatory Temporal Interaction Network Inference (RiTINI) for inferring time-varying interaction graphs in complex systems using a novel combination of space-and-time graph attentions and graph neural ordinary differential equations (ODEs). RiTINI leverages time-lapse signals on a graph prior, as well as perturbations of signals at various nodes in order to effectively capture the dynamics of the underlying system. This approach is distinct from traditional causal inference networks, which are limited to inferring acyclic and static graphs. In contrast, RiTINI can infer cyclic, directed, and time-varying graphs, providing a more comprehensive and accurate representation of complex systems. The graph attention mechanism in RiTINI allows the model to adaptively focus on the most relevant interactions in time and space, while the graph neural ODEs enable continuous-time modeling of the system’s dynamics. We evaluate RiTINI’s performance on simulations of dynamical systems, neuronal networks, and gene regulatory networks, demonstrating its state-of-the-art capability in inferring interaction graphs compared to previous methods. 
    more » « less
  5. Recent advancements in graph representation learning have shifted attention towards dynamic graphs, which exhibit evolving topologies and features over time. The increased use of such graphs creates a paramount need for generative models suitable for applications such as data augmentation, obfuscation, and anomaly detection. However, there are few generative techniques that handle continuously changing temporal graph data; existing work largely relies on augmenting static graphs with additional temporal information to model dynamic interactions between nodes. In this work, we propose a fundamentally different approach: We instead directly model interactions as a joint probability of an edge forming between two nodes at a given time. This allows us to autoregressively generate new synthetic dynamic graphs in a largely assumption free, scalable, and inductive manner. We formalize this approach as DG-Gen, a generative framework for continuous time dynamic graphs, and demonstrate its effectiveness over five datasets. Our experiments demonstrate that DG-Gen not only generates higher fidelity graphs compared to traditional methods but also significantly advances link prediction tasks. 
    more » « less