The overall goal of our research is to develop a system of intelligent multimodal affective pedagogical agents that are effective for different types of learners (Adamo et al., 2021). While most of the research on pedagogical agents tends to focus on the cognitive aspects of online learning and instruction, this project explores the less-studied role of affective (or emotional) factors. We aim to design believable animated agents that can convey realistic, natural emotions through speech, facial expressions, and body gestures and that can react to the students’ detected emotional states with emotional intelligence. Within the context of this goal, the specific objective of the work reported in the paper was to examine the extent to which the agents’ facial micro-expressions affect students’ perception of the agents’ emotions and their naturalness. Micro-expressions are very brief facial expressions that occur when a person either deliberately or unconsciously conceals an emotion being felt (Ekman &Friesen, 1969). Our assumption is that if the animated agents display facial micro expressions in addition to macro expressions, they will convey higher expressive richness and naturalness to the viewer, as “the agents can possess two emotional streams, one based on interaction with the viewer and the other basedmore »
- Award ID(s):
- 2047867
- Publication Date:
- NSF-PAR ID:
- 10392584
- Journal Name:
- Frontiers in Computer Science
- Volume:
- 4
- ISSN:
- 2624-9898
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Due to the COVID-19 crisis, social distancing has been a necessary and effective means of reducing disease through decreased close human contact. However, there has been a corresponding increase in touch starvation due to limited physical contact. Our research seeks to create a solution for allowing individuals to safely communicate through touch over a distance. Our system consists of wearable sensors to measure the social touch gesture, which is then processed and sent to an array of voice coils in an actuator device.
-
Unmanned Aerial Vehicle (UAV) flight paths have been shown to communicate meaning to human observers, similar to human gestural communication. This paper presents the results of a UAV gesture perception study designed to assess how observer viewpoint perspective may impact how humans perceive the shape of UAV gestural motion. Robot gesture designers have demonstrated that robots can indeed communicate meaning through gesture; however, many of these results are limited to an idealized range of viewer perspectives and do not consider how the perception of a robot gesture may suffer from obfuscation or self-occlusion from some viewpoints. This paper presents the results of three online user-studies that examine participants’ ability to accurately perceive the intended shape of two-dimensional UAV gestures from varying viewer perspectives. We used a logistic regression model to characterize participant gesture classification accuracy, demonstrating that viewer perspective does impact how participants perceive the shape of UAV gestures. Our results yielded a viewpoint angle threshold from beyond which participants were able to assess the intended shape of a gesture’s motion with 90% accuracy. We also introduce a perceptibility score to capture user confidence, time to decision, and accuracy in labeling and to understand how differences in flight paths impactmore »
-
Unmanned Aerial Vehicle (UAV) flight paths have been shown to communicate meaning to human observers, similar to human gestural communication. This paper presents the results of a UAV gesture perception study designed to assess how observer viewpoint perspective may impact how humans perceive the shape of UAV gestural motion. Robot gesture designers have demonstrated that robots can indeed communicate meaning through gesture; however, many of these results are limited to an idealized range of viewer perspectives and do not consider how the perception of a robot gesture may suffer from obfuscation or self-occlusion from some viewpoints. This paper presents the results of three online user-studies that examine participants' ability to accurately perceive the intended shape of two-dimensional UAV gestures from varying viewer perspectives. We used a logistic regression model to characterize participant gesture classification accuracy, demonstrating that viewer perspective does impact how participants perceive the shape of UAV gestures. Our results yielded a viewpoint angle threshold from beyond which participants were able to assess the intended shape of a gesture's motion with 90% accuracy. We also introduce a perceptibility score to capture user confidence, time to decision, and accuracy in labeling and to understand how differences in flight paths impactmore »
-
Abstract With the development of industrial automation and artificial intelligence, robotic systems are developing into an essential part of factory production, and the human-robot collaboration (HRC) becomes a new trend in the industrial field. In our previous work, ten dynamic gestures have been designed for communication between a human worker and a robot in manufacturing scenarios, and a dynamic gesture recognition model based on Convolutional Neural Networks (CNN) has been developed. Based on the model, this study aims to design and develop a new real-time HRC system based on multi-threading method and the CNN. This system enables the real-time interaction between a human worker and a robotic arm based on dynamic gestures. Firstly, a multi-threading architecture is constructed for high-speed operation and fast response while schedule more than one task at the same time. Next, A real-time dynamic gesture recognition algorithm is developed, where a human worker’s behavior and motion are continuously monitored and captured, and motion history images (MHIs) are generated in real-time. The generation of the MHIs and their identification using the classification model are synchronously accomplished. If a designated dynamic gesture is detected, it is immediately transmitted to the robotic arm to conduct a real-time response. Amore »