Social touch is a common method of communication between individuals, but touch cues alone provide only a glimpse of the entire interaction. Visual and auditory cues are also present in these interactions, and increase the expressiveness and recognition of the conveyed information. However, most mediated touch interactions have focused on providing only haptic cues to the user. Our research addresses this gap by adding visual cues to a mediated social touch interaction through an array of LEDs attached to a wearable device. This device consists of an array of voice-coil actuators that present normal force to the user’s forearm to recreate the sensation of social touch gestures. We conducted a human subject study (N = 20) to determine the relative importance of the touch and visual cues. Our results demonstrate that visual cues, particularly color and pattern, significantly enhance perceived realism, as well as alter perceived touch intensity, valence, and dominance of the mediated social touch. These results illustrate the importance of closely integrating multisensory cues to create more expressive and realistic virtual interactions.
more »
« less
A Vibrothermal Haptic Display for Socio-emotional Communication
Touch plays a vital role in maintaining human relationships through social and emotional communication. The proposed haptic display prototype generates stimuli in vibrotactile and thermal modalities toward simulating social touch cues between remote users. High-dimensional spatiotemporal vibrotactile-thermal (vibrothermal) patterns were evaluated with ten participants. The device can be wirelessly operated to enable remote communication. In the future, such patterns can be used to richly simulate social touch cues. A research study was conducted in two parts: first, the identification accuracy of vibrothermal patterns was explored; and second, the relatability of vibrothermal patterns to social touch experienced during social interactions was evaluated. Results revealed that while complex patterns were difficult to identify, simpler patterns, such as SINGLE TAP and HOLD, were highly identifiable and highly relatable to social touch cues. Directional patterns were less identifiable and less relatable to the social touch cues experienced during social interaction.
more »
« less
- Award ID(s):
- 1828010
- PAR ID:
- 10344396
- Date Published:
- Journal Name:
- 23rd International Conference on Human-Computer Interaction (HCII 2021) - Late Breaking Papers: Multimodality, eXtended Reality, and Artificial Intelligence
- Volume:
- 13095
- Page Range / eLocation ID:
- 17–30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Haptic devices typically rely on rigid actuators and bulky power supply systems, limiting wearability. Soft materials improve comfort, but careful distribution of stiffness is required to ground actuation forces and enable load transfer to the skin. We present Haptiknit, an approach in which soft, wearable, knit textiles with embedded pneumatic actuators enable programmable haptic display. By integrating pneumatic actuators within high- and low-stiffness machine-knit layers, each actuator can transmit 40 newtons in force with a bandwidth of 14.5 hertz. We demonstrate the concept with an adjustable sleeve for the forearm coupled to an untethered pneumatic control system that conveys a diverse array of social touch signals. We assessed the sleeve’s performance for discriminative and affective touch in a three-part user study and compared our results with those of prior electromagnetically actuated approaches. Haptiknit improves touch localization compared with vibrotactile stimulation and communicates social touch cues with fewer actuators than pneumatic textiles that do not invoke distributed stiffness. The Haptiknit sleeve resulted in similar recognition of social touch gestures compared to a voice-coil array but represented a more portable and comfortable form factor.more » « less
-
Social VR has increased in popularity due to its affordances for rich, embodied, and nonverbal communication. However, nonverbal communication remains inaccessible for blind and low vision people in social VR. We designed accessible cues with audio and haptics to represent three nonverbal behaviors: eye contact, head shaking, and head nodding. We evaluated these cues in real-time conversation tasks where 16 blind and low vision participants conversed with two other users in VR. We found that the cues were effective in supporting conversations in VR. Participants had statistically significantly higher scores for accuracy and confidence in detecting attention during conversations with the cues than without. We also found that participants had a range of preferences and uses for the cues, such as learning social norms. We present design implications for handling additional cues in the future, such as the challenges of incorporating AI. Through this work, we take a step towards making interpersonal embodied interactions in VR fully accessible for blind and low vision people.more » « less
-
Touch as a modality in social communication has been getting more attention with recent developments in wearable technology and an increase in awareness of how limited physical contact can lead to touch starvation and feelings of depression. Although several mediated touch methods have been developed for conveying emotional support, the transfer of emotion through mediated touch has not been widely studied. This work addresses this need by exploring emotional communication through a novel wearable haptic system. The system records physical touch patterns through an array of force sensors, processes the recordings using novel gesture-based algorithms to create actuator control signals, and generates mediated social touch through an array of voice coil actuators. We conducted a human subject study ( N = 20) to understand the perception and emotional components of this mediated social touch for common social touch gestures, including poking, patting, massaging, squeezing, and stroking. Our results show that the speed of the virtual gesture significantly alters the participants' ratings of valence, arousal, realism, and comfort of these gestures with increased speed producing negative emotions and decreased realism. The findings from the study will allow us to better recognize generic patterns from human mediated touch perception and determine how mediated social touch can be used to convey emotion. Our system design, signal processing methods, and results can provide guidance in future mediated social touch design.more » « less
-
ObjectiveThis study examined the interaction of gait-synchronized vibrotactile cues with an active ankle exoskeleton that provides plantarflexion assistance. BackgroundAn exoskeleton that augments gait may support collaboration through feedback to the user about the state of the exoskeleton or characteristics of the task. MethodsParticipants ( N = 16) were provided combinations of torque assistance and vibrotactile cues at pre-specified time points in late swing and early stance while walking on a self-paced treadmill. Participants were either given explicit instructions ( N = 8) or were allowed to freely interpret (N=8) how to coordinate with cues. ResultsFor the free interpretation group, the data support an 8% increase in stride length and 14% increase in speed with exoskeleton torque across cue timing, as well as a 5% increase in stride length and 7% increase in speed with only vibrotactile cues. When given explicit instructions, participants modulated speed according to cue timing—increasing speed by 17% at cues in late swing and decreasing speed 11% at cues in early stance compared to no cue when exoskeleton torque was off. When torque was on, participants with explicit instructions had reduced changes in speed. ConclusionThese findings support that the presence of torque mitigates how cues were used and highlights the importance of explicit instructions for haptic cuing. Interpreting cues while walking with an exoskeleton may increase cognitive load, influencing overall human-exoskeleton performance for novice users. ApplicationInteractions between haptic feedback and exoskeleton use during gait can inform future feedback designs to support coordination between users and exoskeletons.more » « less
An official website of the United States government

