skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: What will you do next? A sequence analysis on the student transitions between online platforms in blended courses
Students’ interactions with online tools can provide us with insights into their study and work habits. Prior research has shown that these habits, even as simple as the number of actions or the time spent on online platforms can distinguish between the higher performing students and low-performers. These habits are also often used to predict students’ performance in classes. One key feature of these actions that is often overlooked is how and when the students transition between different online platforms. In this work, we study sequences of student transitions between online tools in blended courses and identify which habits make the most difference between the higher and lower performing groups. While our results showed that most of the time students focus on a single tool, we were able to find patterns in their transitions to differentiate high and low performing groups. These findings can help instructors to provide procedural guidance to the students, as well as to identify harmful habits and make timely interventions.  more » « less
Award ID(s):
1821475
PAR ID:
10392588
Author(s) / Creator(s):
; ; ;
Editor(s):
Lynch, Collin F.; Merceron, Agathe; Desmarais, Michel; Nkambou, Roger
Date Published:
Journal Name:
Proceedings of The 12th International Conference on Educational Data Mining
Page Range / eLocation ID:
59 - 68
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rafferty, Anna N.; Whitehill, Jacob; Cavalli-Sforza, Violetta; Romero, Cristobal (Ed.)
    Teamwork, often mediated by version control systems such as Git and Apache Subversion (SVN), is central to professional programming. As a consequence, many colleges are incorporating both collaboration and online development environments into their curricula even in introductory courses. In this research, we collected GitHub logs from two programming projects in two offerings of a CS2 Java programming course for computer science majors. Students worked in pairs for both projects (one optional, the other mandatory) in each year. We used the students’ GitHub history to classify the student teams into three groups, collaborative, cooperative, or solo-submit, based on the division of labor. We then calculated different metrics for students’ teamwork including the total number and the average number of commits in different parts of the projects and used these metrics to predict the students’ teamwork style. Our findings show that we can identify the students’ teamwork style automatically from their submission logs. This work helps us to better understand novices’ habits while using version control systems. These habits can identify the harmful working styles among them and might lead to the development of automatic scaffolds for teamwork and peer support in the future. 
    more » « less
  2. Lischka, A. E.; Dyer, E. B.; Jones, R. S.; Lovett, J. N..; Strayer, J.; & Drown, S. (Ed.)
    Many studies use instructional designs that include two or more artifacts (digital manipulatives, tables, graphs) to support students’ development of reasoning about covarying quantities. While students’ forms of covariational reasoning and the designs are often the focus of these studies, the way students’ interactions and transitions between artifacts shape their actions and thinking is often neglected. By examining the transitions that students make between artifacts as they construct and reorganize their reasoning, our study aimed to justify claims made by various studies about the nature of the synergy of artifacts. In this paper, we present data from a design experiment with a pair of sixth-grade students to discuss how their transitions between artifacts provided a constructive space for them to reason about covarying quantities in graphs. 
    more » « less
  3. Personalized learning stems from the idea that students benefit from instructional material tailored to their needs. Many online learning platforms purport to implement some form of personalized learning, often through on-demand tutoring or self-paced instruction, but to our knowledge none have a way to automatically explore for specific opportunities to personalize students’ education nor a transparent way to identify the effects of personalization on specific groups of students. In this work we present the Automatic Personalized Learning Service (APLS). The APLS uses multi-armed bandit algorithms to recommend the most effective support to each student that requests assistance when completing their online work, and is currently used by ASSISTments, an online learning platform. The first empirical study of the APLS found that Beta-Bernoulli Thompson Sampling, a popular and effective multi-armed bandit algorithm, was only slightly more capable of selecting helpful support than randomly selecting from the relevant support options. Therefore, we also present Decision Tree Thompson Sampling (DTTS), a novel contextual multi-armed bandit algorithm that integrates the transparency and interpretability of decision trees into Thomson sampling. In simulation, DTTS overcame the challenges of recommending support within an online learning platform and was able to increase students’ learning by as much as 10% more than the current algorithm used by the APLS. We demonstrate that DTTS is able to identify qualitative interactions that not only help determine the most effective support for students, but that also generalize well to new students, problems, and support content. The APLS using DTTS is now being deployed at scale within ASSISTments and is a promising tool for all educational learning platforms. 
    more » « less
  4. Personalized learning stems from the idea that students benefit from instructional material tailored to their needs. Many online learning platforms purport to implement some form of personalized learning, often through on-demand tutoring or self-paced instruction, but to our knowledge none have a way to automatically explore for specific opportunities to personalize students’ education nor a transparent way to identify the effects of personalization on specific groups of students. In this work we present the Automatic Personalized Learning Service (APLS). The APLS uses multi-armed bandit algorithms to recommend the most effective support to each student that requests assistance when completing their online work, and is currently used by ASSISTments, an online learning platform. The first empirical study of the APLS found that Beta-Bernoulli Thompson Sampling, a popular and effective multi-armed bandit algorithm, was only slightly more capable of selecting helpful support than randomly selecting from the relevant support options. Therefore, we also present Decision Tree Thompson Sampling (DTTS), a novel contextual multi-armed bandit algorithm that integrates the transparency and interpretability of decision trees into Thomson sampling. In simulation, DTTS overcame the challenges of recommending support within an online learning platform and was able to increase students’ learning by as much as 10% more than the current algorithm used by the APLS. We demonstrate that DTTS is able to identify qualitative interactions that not only help determine the most effective support for students, but that also generalize well to new students, problems, and support content. The APLS using DTTS is now being deployed at scale within ASSISTments and is a promising tool for all educational learning platforms. 
    more » « less
  5. Personalized learning stems from the idea that students benefit from instructional material tailored to their needs. Many online learning platforms purport to implement some form of personalized learning, often through on-demand tutoring or self-paced instruction, but to our knowledge none have a way to automatically explore for specific opportunities to personalize students’ education nor a transparent way to identify the effects of personalization on specific groups of students. In this work we present the Automatic Personalized Learning Service (APLS). The APLS uses multi-armed bandit algorithms to recommend the most effective support to each student that requests assistance when completing their online work, and is currently used by ASSISTments, an online learning platform. The first empirical study of the APLS found that Beta-Bernoulli Thompson Sampling, a popular and effective multi-armed bandit algorithm, was only slightly more capable of selecting helpful support than randomly selecting from the relevant support options. Therefore, we also present Decision Tree Thompson Sampling (DTTS), a novel contextual multi-armed bandit algorithm that integrates the transparency and interpretability of decision trees into Thomson sampling. In simulation, DTTS overcame the challenges of recommending support within an online learning platform and was able to increase students’ learning by as much as 10% more than the current algorithm used by the APLS. We demonstrate that DTTS is able to identify qualitative interactions that not only help determine the most effective support for students, but that also generalize well to new students, problems, and support content. The APLS using DTTS is now being deployed at scale within ASSISTments and is a promising tool for all educational learning platforms. 
    more » « less