skip to main content


Title: Doctoral advisor selection processes in science, math, and engineering programs in the United States
Abstract

Although advising relationships are key for doctoral student success, little research has addressed how they form. Understanding the formation of advising relationships can help contextualize their later development and ultimately support a student’s decision to persist in the doctorate. To understand relationship formation, the purpose of this qualitative study is to identify and describe the types of advisor–advisee selection processes that exist in engineering, science, and math doctoral programs and examine patterns across disciplines within those fields. We conducted interviews with doctoral program directors and engaged in document analysis of graduate student handbooks from 55 doctoral programs in the aforementioned fields in high research institutions across the United States. Using principal–agent theory as a theoretical lens, our findings showed that engineering programs tend to decentralize the advisor selection process by funding students across different funding sources upon enrollment. Contrariwise, science and math programs tended to fund all students in a cohort from a common funding source, which allowed students to have more time to gather information, meet, and select an advisor. These findings also show important nuances when comparing graduate education in these programs that directly impact the doctoral student experience and reiterates the necessity to study these fields separately.

 
more » « less
NSF-PAR ID:
10392832
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
International Journal of STEM Education
Volume:
10
Issue:
1
ISSN:
2196-7822
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Degree completion rates for doctoral engineering students remain stagnant at levels lower than necessary to meet national and global workforce needs. Increasing degree completion can improve opportunities for individuals and provide the human resources needed to address engineering challenges.

    Purpose/Hypothesis

    In this work, we measure the association of engineering identity variables with degree completion intentions for students who have persisted in doctoral study. We add to existing literature that suggests the importance of advisor and peer relationships, and the number of years in the doctoral program.

    Design/Method

    We use data collected via a national cross‐sectional survey of doctoral engineering students, which included measures of social and professional identities, graduate school experiences, and demographics. Surveys were collected from 1754 participants at 98 US universities between late 2017 and early 2018. The analyses reported here use multiple regression to measure associations with engineering doctoral degree completion intentions.

    Results

    Research interest and scientist performance/competence are individually associated with degree completion intentions in students who are persisting in doctoral study. Overall, graduate engineering identity explains significant portions of variation in degree completion intentions (9.5%) beyond advisor and peer relationship variables and the number of years in graduate programs.

    Conclusions

    Researcher interest and scientist performance/competence may be key opportunities to engage doctoral student engineering identity to improve degree completion rates. Accordingly, institutions can foster students' interest in research and build their confidence in their scientific competence to support students as they complete the doctoral degree.

     
    more » « less
  2. Abstract

    Whether doctoral students are funded primarily by fellowships, research assistantships, or teaching assistantships impacts their degree completion, time to degree, learning outcomes, and short- and long-term career outcomes. Variations in funding patterns have been studied at the broad field level but not comparing engineering sub-disciplines. We addressed two research questions: How do PhD student funding mechanisms vary across engineering sub-disciplines? And how does variation in funding mechanisms across engineering sub-disciplines map onto the larger STEM disciplinary landscape? We analyzed 103,373 engineering and computing responses to the U.S. Survey of Earned Doctorates collected between 2007 and 2016. We conducted analysis of variance with Bonferroni post hoc comparisons to examine variation in funding across sub-disciplines. Then, we conducted a k-means cluster analysis on percentage variables for fellowship, research, and teaching assistantship funding mechanism with STEM sub-discipline as the unit of analysis. A statistically significantly greater percentage of biomedical/biological engineering doctoral students were funded via a fellowship, compared to every other engineering sub-discipline. Consequently, biomedical/biological engineering had significantly lower proportions of students supported via research and teaching assistantships than nearly all other engineering sub-disciplines. We identified five clusters. The majority of engineering sub-disciplines grouped together into a cluster with high research assistantships and low teaching assistantships. Biomedical/biological engineering clustered in the high fellowships grouping with most other biological sciences but no other engineering sub-disciplines. Biomedical/biological engineering behaves much more like biological and life sciences in utilizing fellowships to fund graduate students, far more than other engineering sub-disciplines. Our study provides further evidence of the prevalence of fellowships in life sciences and how it stretches into biomedical/biological engineering. The majority of engineering sub-disciplines relied more on research assistantships to fund graduate study. The lack of uniformity provides an opportunity to diversify student experiences during their graduate programs but also necessitates an awareness to the advantages and disadvantages that different funding portfolios can bestow on students.

     
    more » « less
  3. Abstract Background

    Depression is one of the top mental health concerns among biology graduate students and has contributed to the “graduate student mental health crisis” declared in 2018. Several prominent science outlets have called for interventions to improve graduate student mental health, yet it is unclear to what extent graduate students with depression discuss their mental health with others in their Ph.D. programs. While sharing one’s depression may be an integral step to seeking mental health support during graduate school, depression is considered to be a concealable stigmatized identity (CSI) and revealing one’s depression could result in loss of status or discrimination. As such, face negotiation theory, which describes a set of communicative behaviors that individuals use to regulate their social dignity, may help identify what factors influence graduate students’ decisions about whether to reveal their depression in graduate school. In this study, we interviewed 50 Ph.D. students with depression enrolled across 28 life sciences graduate programs across the United States. We examined (1) to what extent graduate students revealed their depression to faculty advisors, graduate students, and undergraduates in their research lab, (2) the reasons why they revealed or concealed their depression, and (3) the consequences and benefits they perceive are associated with revealing depression. We used a hybrid approach of deductive and inductive coding to analyze our data.

    Results

    More than half (58%) of Ph.D. students revealed their depression to at least one faculty advisor, while 74% revealed to at least one graduate student. However, only 37% of graduate students revealed their depression to at least one undergraduate researcher. Graduate students’ decisions to reveal their depression to their peers were driven by positive mutual relationships, while their decisions to reveal to faculty were often based on maintaining dignity by performing preventative or corrective facework. Conversely, graduates performed supportive facework when interacting with undergraduate researchers by revealing their depression as a way to destigmatize struggling with mental health.

    Conclusions

    Life sciences graduate students most commonly revealed their depression to other graduate students, and over half reported discussing depression with their faculty advisor. However, graduate students were reluctant to share their depression with undergraduate researchers. Power dynamics between graduate students and their advisors, their peers, and their undergraduate mentees influenced the reasons they chose to reveal or conceal their depression in each situation. This study provides insights into how to create more inclusive life science graduate programs where students can feel more comfortable discussing their mental health.

     
    more » « less
  4. The importance of diversifying the national STEM workforce is well-established in the literature (Marrongelle, 2018). This need extends to graduate education in the STEM fields, leading N.C. A&T to invest considerably in graduate education and wraparound support initiatives that help graduate students build science identity and competencies for careers both within and beyond academia. The NSF-funded Bridges to the Doctorate project will integrate culturally reflective mentoring and professional development specifically designed for Black, Latinx, and Native American Ph.D. students. This holistic, graduate student development model includes academic and professional skill-building for STEM careers alongside targeted support for pursuing fellowship opportunities. This paper discusses the planned mentoring approach for the aforementioned program and previous approaches to mentoring graduate students used at N.C. A&T. The BD Fellows program will support formal and informal mentoring relationships, as mentoring contributes towards retention in STEM graduate programs (Ragins, 2007). BD Fellows will participate in monthly one-hour seminars on how to identify, establish, and maintain informal mentoring relationships (Schwartz et al., 2018; Parnes et al., 2020), while STEM faculty will attend seminars on leveraging their social networks as vital sources of mentorship for the BD Fellows. Using a multi-pronged collaborative approach, this model integrates the evidence-based domains of self-efficacy (Laurencelle & Scanlan, 2018; Lent et al., 1994; Lent et al., 2008), science/research identity (Lent et al., 2015; Zimmerman, 2000), and social cognitive career theory (Lent et al., 2005; Lent and Brown, 2006) to recruit, enroll, and graduate LSAMP Fellows with STEM doctoral degrees. Guided by the theories, the following questions will be addressed: (1) To what extent is culturally reflective mentoring identified as a critical driver of B2D Fellows’ success? (2) To what extent are the program’s training components fostering increases in B2D Fellow’s self-efficacy, competency, and science identity? (3) What is the strength of the correlation between participation in the program training components, mentoring activities, and persistence in graduate school? (4) To what extent does the perceived importance of self-efficacy, competency, and science identity differ by race/ethnicity and gender? These data will be analyzed using both formative and summative assessments of program outcomes. Quantitative data will include pre-, post-, and exit surveys. Qualitative data will assess the impact of mentoring and program support. This study will be guided by established protocols that have been approved by the N.C. A&T IRB. It is anticipated that our BD Fellows program will significantly impact the retention and graduation rates of underrepresented minority STEM graduate students in our doctoral programs, thus producing a diverse workforce of STEM professionals. Materials from the program recruiting cycle, mentoring workshops, and the structured fellowship application process will be disseminated freely to other LSAMP and minority-serving institutions across the country. Strategies and outcomes of this project will be published in peer-reviewed journals and shared in conference proceedings. 
    more » « less
  5. Eastern Mennonite University received a 5-year S-STEM award for their STEM Scholars Engaging in Local Problems (SSELP) program. The goal of this place-based, interdisciplinary scholarship program is to increase the number of academically talented, low-income students who graduate in STEM fields and either pursue immediate employment in STEM careers or STEM-related service or continue their STEM education in graduate school. In 2018 and 2019, two cohorts of seven students were recruited to major in biology, chemistry, engineering, computer science, mathematics, or environmental science. A key part of recruitment involved on-campus interviews, during a February Scholarship Day, between STEM faculty and potential scholars. As the yield rate for the event is high (54-66%), the university has continued this practice, funding additional STEM scholarships. In order to retain and graduate the scholars in STEM fields, the SSELP faculty designed and carried out various projects and activities to support the students. The SSELP Scholars participated in a first-year STEM Career Practicum class, a one-credit course that connected students with regional STEM practitioners across a variety of fields. The scholars were supported by peer tutors embedded in STEM classes, and now many are tutors themselves. They participated in collaborative projects where the cohorts worked to identify and solve a problem or need in their community. The SSELP scholars were supported by both faculty and peer mentors. Each scholarship recipient was matched with a faculty mentor in addition to an academic advisor. A faculty mentor was in a related STEM field but typically not teaching the student. Each scholar was matched with a peer mentor (junior or senior) in their intended major of study. In addition, community building activities were implemented to provide a significant framework for interaction within the cohort. To evaluate the progress of the SSELP program, multiple surveys were conducted. HERI/CIRP Freshman Survey was used in the fall of 2018 for the first cohort and 2019 for the second cohort. The survey indicated an upward shift in students’ perception of science and in making collaborative effort towards positive change. Preliminary data on the Science Motivation Questionnaire showed that the SSELP scholars began their university studies with lower averages than their non-SSELP STEM peers in almost every area of science motivation. After over three years of implementation of the NSF-funded STEM Scholars Engaging in Local Problems program, the recruitment effort has grown significantly in STEM fields in the university. Within the two cohorts, the most common majors were environmental science and engineering. While 100% of Cohorts 1 and 2 students were retained into the Fall semester of the second year, two students from Cohort 1 left the program between the third and fourth semesters of their studies. While one student from Cohort 2 had a leave of absence, they have returned to continue their studies. The support system formed among the SSELP scholars and between the scholars and faculty has benefited the students in both their academic achievement as well as their personal growth. 
    more » « less