We use Hubble Space Telescope Wide Field Camera 3 G102 and G141 grism spectroscopy to measure rest-frame optical emission-line ratios of 533 galaxies at
We investigate spatially resolved emission-line ratios in a sample of 219 galaxies (0.6 <
- Publication Date:
- NSF-PAR ID:
- 10392848
- Journal Name:
- The Astrophysical Journal
- Volume:
- 943
- Issue:
- 1
- Page Range or eLocation-ID:
- Article No. 37
- ISSN:
- 0004-637X
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract z ∼ 1.5 in the CANDELS Lyα Emission at Reionization survey. We compare [Oiii ]/Hβ versus [Sii ]/(Hα + [Nii ]) as an “unVO87” diagram for 461 galaxies and [Oiii ]/Hβ versus [Neiii ]/[Oii ] as an “OHNO” diagram for 91 galaxies. The unVO87 diagram does not effectively separate active galactic nuclei (AGN) and [Nev ] sources from star-forming galaxies, indicating that the unVO87 properties of star-forming galaxies evolve with redshift and overlap with AGN emission-line signatures atz > 1. The OHNO diagram does effectively separate X-ray AGN and [Nev ]-emitting galaxies from the rest of the population. We find that the [Oiii ]/Hβ line ratios are significantly anticorrelated with stellar mass and significantly correlated with , while [Sii ]/(Hα + [Nii ]) is significantly anticorrelated with . Comparison with MAPPINGS V photoionization models indicates that these trends are consistent with lower metallicity and higher ionization in low-mass and high-star formation rate (SFR) galaxies. We do not find evidence for redshift evolution of the emission-line ratios outside of the correlations with mass and SFR. Our results suggest that the OHNO diagram of [Oiii ]/Hβ versus [Neiii ]/[Oii ] willmore » -
Abstract The Baldwin, Philips, & Terlevich diagram of [O
iii ]/Hβ versus [Nii ]/Hα (hereafter N2-BPT) has long been used as a tool for classifying galaxies based on the dominant source of ionizing radiation. Recent observations have demonstrated that galaxies atz ∼ 2 reside offset from local galaxies in the N2-BPT space. In this paper, we conduct a series of controlled numerical experiments to understand the potential physical processes driving this offset. We model nebular line emission in a large sample of galaxies, taken from thesimba cosmological hydrodynamic galaxy formation simulation, using thecloudy photoionization code to compute the nebular line luminosities from Hii regions. We find that the observed shift toward higher [Oiii ]/Hβ and [Nii ]/Hα values at high redshift arises from sample selection: when we consider only the most massive galaxiesM *∼ 1010–11M ⊙, the offset naturally appears, due to their high metallicities. We predict that deeper observations that probe lower-mass galaxies will reveal galaxies that lie on a locus comparable toz ∼ 0 observations. Even when accounting for samples-selection effects, we find that there is a subtle mismatch between simulations and observations. To resolve this discrepancy, we investigate the impact of varying ionization parameters, Hii region densities, gas-phase abundance patterns, and increasing radiation field hardness on N2-BPT diagrams. We find that either decreasing themore » -
Abstract Despite the importance of active galactic nuclei (AGNs) in galaxy evolution, accurate AGN identification is often challenging, as common AGN diagnostics can be confused by contributions from star formation and other effects (e.g., Baldwin–Phillips–Terlevich diagrams). However, one promising avenue for identifying AGNs is “coronal emission lines” (“CLs”), which are highly ionized species of gas with ionization potentials ≥100 eV. These CLs may serve as excellent signatures for the strong ionizing continuum of AGNs. To determine if CLs are in fact strong AGN tracers, we assemble and analyze the largest catalog of optical CL galaxies using the Sloan Digital Sky Survey's Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) catalog. We detect CL emission in 71 MaNGA galaxies, out of the 10,010 unique galaxies from the final MaNGA catalog, with ≥5
σ confidence. In our sample, we measure [Nev ]λ 3347,λ 3427, [Fevii ]λ 3586,λ 3760,λ 6086, and [Fex ]λ 6374 emission and crossmatch the CL galaxies with a catalog of AGNs that were confirmed with broad-line, X-ray, IR, and radio observations. We find that [Nev ] emission, compared to [Fevii ] and [Fex ] emission, is best at identifying high-luminosity AGNs. Moreover, we find that the CL galaxies with the least dust extinction yield the most iron CL detections. We posit that themore » -
Abstract We present rest-frame optical emission-line flux ratio measurements for five
z > 5 galaxies observed by the James Webb Space Telescope Near-Infared Spectrograph (NIRSpec) in the SMACS 0723 Early Release Observations. We add several quality-control and post-processing steps to the NIRSpec pipeline reduction products in order to ensure reliablerelative flux calibration of emission lines that are closely separated in wavelength, despite the uncertainabsolute spectrophotometry of the current version of the reductions. Compared toz ∼ 3 galaxies in the literature, thez > 5 galaxies have similar [Oiii ]λ 5008/Hβ ratios, similar [Oiii ]λ 4364/Hγ ratios, and higher (∼0.5 dex) [NeIII ]λ 3870/[OII ]λ 3728 ratios. We compare the observations to MAPPINGS V photoionization models and find that the measured [NeIII ]λ 3870/[OII ]λ 3728, [Oiii ]λ 4364/Hγ , and [Oiii ]λ 5008/Hβ emission-line ratios are consistent with an interstellar medium (ISM) that has very high ionization ( , units of cm s−1), low metallicity (Z /Z ⊙≲ 0.2), and very high pressure ( , units of cm−3). The combination of [Oiii ]λ 4364/Hγ and [Oiii ]λ (4960 + 5008)/Hβ line ratios indicate very high electron temperatures of , further implying metallicities ofZ /Z ⊙≲ 0.2 with the application of low-redshift calibrations for “T e -based” metallicities. These observations represent a tantalizing new view of the physical conditions of the ISM in galaxies atmore » -
ABSTRACT Motivated by the discovery of large ionized clouds around AGN, and particularly the large fraction of those that are consistent with photoionized gaseous tidal debris, we searched for [O iii] emission around Seyfert galaxies previously mapped in H i, many with extended gas features. Of 26 Seyfert galaxies, we find one spatially extended emission feature, a discrete cloud projected ≈12 kpc SW from the centre of Mkn 1 and spanning a transverse extent of 8 kpc. Optical spectroscopy (Kast/Lick and SCORPIO/BTA) of this cloud confirms its association with the Mkn 1–NGC 451 galaxy pair, closely matching the kinematics of nearby H i structures, and reveals emission-line ratios requiring photoionization by the AGN at roughly the direct observed luminosity of the nucleus. For the entire sample, the full opening angle of the ionization cones (bicones) must be <20° if the AGNs are continuously bright for scales longer than the light-traveltimes to the H i structures. Since typical AGN ionization cones are observed to be much broader than this, our low detection fraction may add to evidence for the ubiquity of strong variations in AGN luminosity on scales 104–105 yr.