Consider two halfspaces
We present a theory of spontaneous Fermi surface deformations for halffilled Landau levels (filling factors of the form
 Award ID(s):
 2001980
 NSFPAR ID:
 10392869
 Publisher / Repository:
 Nature Publishing Group
 Date Published:
 Journal Name:
 Scientific Reports
 Volume:
 13
 Issue:
 1
 ISSN:
 20452322
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract and$$H_1^+$$ ${H}_{1}^{+}$ in$$H_2^+$$ ${H}_{2}^{+}$ whose bounding hyperplanes$${\mathbb {R}}^{d+1}$$ ${R}^{d+1}$ and$$H_1$$ ${H}_{1}$ are orthogonal and pass through the origin. The intersection$$H_2$$ ${H}_{2}$ is a spherical convex subset of the$${\mathbb {S}}_{2,+}^d:={\mathbb {S}}^d\cap H_1^+\cap H_2^+$$ ${S}_{2,+}^{d}:={S}^{d}\cap {H}_{1}^{+}\cap {H}_{2}^{+}$d dimensional unit sphere , which contains a great subsphere of dimension$${\mathbb {S}}^d$$ ${S}^{d}$ and is called a spherical wedge. Choose$$d2$$ $d2$n independent random points uniformly at random on and consider the expected facet number of the spherical convex hull of these points. It is shown that, up to terms of lower order, this expectation grows like a constant multiple of$${\mathbb {S}}_{2,+}^d$$ ${S}_{2,+}^{d}$ . A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point process on$$\log n$$ $logn$ . The result is compared to the corresponding behaviour of classical Euclidean random polytopes and of spherical random polytopes on a halfsphere.$${\mathbb {S}}_{2,+}^d$$ ${S}_{2,+}^{d}$ 
Abstract Given a monotone submodular set function with a knapsack constraint, its maximization problem has two types of approximation algorithms with running time
and$$O(n^2)$$ $O\left({n}^{2}\right)$ , respectively. With running time$$O(n^5)$$ $O\left({n}^{5}\right)$ , the best performance ratio is$$O(n^5)$$ $O\left({n}^{5}\right)$ . With running time$$11/e$$ $11/e$ , the wellknown performance ratio is$$O(n^2)$$ $O\left({n}^{2}\right)$ and an improved one is claimed to be$$(11/e)/2$$ $(11/e)/2$ recently. In this paper, we design an algorithm with running$$(11/e^2)/2$$ $(11/{e}^{2})/2$ and performance ratio$$O(n^2)$$ $O\left({n}^{2}\right)$ , and an algorithm with running time$$11/e^{2/3}$$ $11/{e}^{2/3}$ and performance ratio 1/2.$$O(n^3)$$ $O\left({n}^{3}\right)$ 
Abstract A wellknown open problem of Meir and Moser asks if the squares of sidelength 1/
n for can be packed perfectly into a rectangle of area$$n\ge 2$$ $n\ge 2$ . In this paper we show that for any$$\sum _{n=2}^\infty n^{2}=\pi ^2/61$$ ${\sum}_{n=2}^{\infty}{n}^{2}={\pi}^{2}/61$ , and any$$1/2 $1/2<t<1$ that is sufficiently large depending on$$n_0$$ ${n}_{0}$t , the squares of sidelength for$$n^{t}$$ ${n}^{t}$ can be packed perfectly into a square of area$$n\ge n_0$$ $n\ge {n}_{0}$ . This was previously known (if one packs a rectangle instead of a square) for$$\sum _{n=n_0}^\infty n^{2t}$$ ${\sum}_{n={n}_{0}}^{\infty}{n}^{2t}$ (in which case one can take$$1/2 $1/2<t\le 2/3$ ).$$n_0=1$$ ${n}_{0}=1$ 
Abstract A longstanding problem in mathematical physics is the rigorous derivation of the incompressible Euler equation from Newtonian mechanics. Recently, HanKwan and Iacobelli (Proc Am Math Soc 149:3045–3061, 2021) showed that in the monokinetic regime, one can directly obtain the Euler equation from a system of
N particles interacting in ,$${\mathbb {T}}^d$$ ${T}^{d}$ , via Newton’s second law through a$$d\ge 2$$ $d\ge 2$supercritical meanfield limit . Namely, the coupling constant in front of the pair potential, which is Coulombic, scales like$$\lambda $$ $\lambda $ for some$$N^{\theta }$$ ${N}^{\theta}$ , in contrast to the usual meanfield scaling$$\theta \in (0,1)$$ $\theta \in (0,1)$ . Assuming$$\lambda \sim N^{1}$$ $\lambda \sim {N}^{1}$ , they showed that the empirical measure of the system is effectively described by the solution to the Euler equation as$$\theta \in (1\frac{2}{d(d+1)},1)$$ $\theta \in (1\frac{2}{d(d+1)},1)$ . HanKwan and Iacobelli asked if their range for$$N\rightarrow \infty $$ $N\to \infty $ was optimal. We answer this question in the negative by showing the validity of the incompressible Euler equation in the limit$$\theta $$ $\theta $ for$$N\rightarrow \infty $$ $N\to \infty $ . Our proof is based on Serfaty’s modulatedenergy method, but compared to that of HanKwan and Iacobelli, crucially uses an improved “renormalized commutator” estimate to obtain the larger range for$$\theta \in (1\frac{2}{d},1)$$ $\theta \in (1\frac{2}{d},1)$ . Additionally, we show that for$$\theta $$ $\theta $ , one cannot, in general, expect convergence in the modulated energy notion of distance.$$\theta \le 1\frac{2}{d}$$ $\theta \le 1\frac{2}{d}$ 
Abstract The electric
E 1 and magneticM 1 dipole responses of the nucleus$$N=Z$$ $N=Z$ Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$ ${}^{24}$ Mg($$^{24}$$ ${}^{24}$ ) reaction, were delivered by the ELBE accelerator of the HelmholtzZentrum DresdenRossendorf. The collimated bremsstrahlung photons excited one$$\gamma ,\gamma ^{\prime }$$ $\gamma ,{\gamma}^{\prime}$ , four$$J^{\pi }=1^$$ ${J}^{\pi}={1}^{}$ , and six$$J^{\pi }=1^+$$ ${J}^{\pi}={1}^{+}$ states in$$J^{\pi }=2^+$$ ${J}^{\pi}={2}^{+}$ Mg. Deexcitation$$^{24}$$ ${}^{24}$ rays were detected using the four highpurity germanium detectors of the$$\gamma $$ $\gamma $ ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$\gamma $$ $\gamma $ is observed, but this$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$ $B\left(M1\right)\uparrow =2.7\left(3\right)\phantom{\rule{0ex}{0ex}}{\mu}_{N}^{2}$ nucleus exhibits only marginal$$N=Z$$ $N=Z$E 1 strength of less than e$$\sum B(E1)\uparrow \le 0.61 \times 10^{3}$$ $\sum B\left(E1\right)\uparrow \le 0.61\times {10}^{3}$ fm$$^2 \, $$ ${}^{2}\phantom{\rule{0ex}{0ex}}$ . The$$^2$$ ${}^{2}$ branching ratios in combination with the expected results from the Alaga rules demonstrate that$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$ $B(\Pi 1,{1}_{i}^{\pi}\to {2}_{1}^{+})/B(\Pi 1,{1}_{i}^{\pi}\to {0}_{\mathrm{gs}}^{+})$K is a good approximative quantum number for Mg. The use of the known$$^{24}$$ ${}^{24}$ strength and the measured$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ ${\rho}^{2}(E0,{0}_{2}^{+}\to {0}_{\mathrm{gs}}^{+})$ branching ratio of the 10.712 MeV$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$ $B(M1,{1}^{+}\to {0}_{2}^{+})/B(M1,{1}^{+}\to {0}_{\mathrm{gs}}^{+})$ level allows, in a twostate mixing model, an extraction of the difference$$1^+$$ ${1}^{+}$ between the prolate groundstate structure and shapecoexisting superdeformed structure built upon the 6432keV$$\varDelta \beta _2^2$$ $\Delta {\beta}_{2}^{2}$ level.$$0^+_2$$ ${0}_{2}^{+}$