skip to main content

Title: Plant conservation assessment at scale: Rapid triage of extinction risks
Societal Impact Statement

The current rate of global biodiversity loss creates a pressing need to increase efficiency and throughput of extinction risk assessments in plants. We must assess as many plant species as possible, working with imperfect knowledge, to address the habitat loss and extinction threats of the Anthropocene. Using the biodiversity database, Botanical Information and Ecology Network (BIEN), and the Andropogoneae grass tribe as a case study, we demonstrate that large‐scale, preliminary conservation assessments can play a fundamental role in accelerating plant conservation pipelines and setting priorities for more in‐depth investigations.


The International Union for the Conservation of Nature (IUCN) Red List criteria are widely used to determine extinction risks of plant and animal life. Here, we used The Red List's criterion B, Geographic Range Size, to provide preliminary conservation assessments of the members of a large tribe of grasses, the Andropogoneae, with ~1100 species, including maize, sorghum, and sugarcane and their wild relatives.

We used georeferenced occurrence data from the Botanical Information and Ecology Network (BIEN) and automated individual species assessments using ConR to demonstrate efficacy and accuracy in using time‐saving tools for conservation research. We validated our results with those from the IUCN‐recommended assessment tool, GeoCAT.

We discovered a remarkably large gap in digitized information, with slightly more than 50% of the Andropogoneae lacking sufficient information for assessment. ConR and GeoCAT largely agree on which taxa are of least concern (>90%) or possibly threatened (<10%), highlighting that automating assessments with ConR is a viable strategy for preliminary conservation assessments of large plant groups. Results for crop wild relatives are similar to those for the entire dataset.

Increasing digitization and collection needs to be a high priority. Available rapid assessment tools can then be used to identify species that warrant more comprehensive investigation.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Page Range / eLocation ID:
p. 386-397
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND Madagascar is one of the world’s foremost biodiversity hotspots. Its unique assemblage of plants, animals, and fungi—the majority of which evolved on the island and occur nowhere else—is both diverse and threatened. After human arrival, the island’s entire megafauna became extinct, and large portions of the current flora and fauna may be on track for a similar fate. Conditions for the long-term survival of many Malagasy species are not currently met because of multiple anthropogenic threats. ADVANCES We review the extinction risk and threats to biodiversity in Madagascar, using available international assessment data as well as a machine learning analysis to predict the extinction risks and threats to plant species lacking assessments. Our compilation of global International Union for Conservation of Nature (IUCN) Red List assessments shows that overexploitation alongside unsustainable agricultural practices affect 62.1 and 56.8% of vertebrate species, respectively, and each affects nearly 90% of all plant species. Other threats have a relatively minor effect today but are expected to increase in coming decades. Because only one-third (4652) of all Malagasy plant species have been formally assessed, we carried out a neural network analysis to predict the putative status and threats for 5887 unassessed species and to evaluate biases in current assessments. The percentage of plant species currently assessed as under threat is probably representative of actual numbers, except in the case of the ferns and lycophytes, where significantly more species are estimated to be threatened. We find that Madagascar is home to a disproportionately high number of Evolutionarily Distinct and Globally Endangered (EDGE) species. This further highlights the urgency for evidence-based and effective in situ and ex situ conservation. Despite these alarming statistics and trends, we find that 10.4% of Madagascar’s land area is protected and that the network of protected areas (PAs) covers at least part of the range of 97.1% of terrestrial and freshwater vertebrates with known distributions (amphibians, freshwater fishes, reptiles, birds, and mammal species combined) and 67.7% of plant species (for threatened species, the percentages are 97.7% for vertebrates and 79.6% for plants). Complementary to this, ex situ collections hold 18% of vertebrate species and 23% of plant species. Nonetheless, there are still many threatened species that do not occur within PAs and are absent from ex situ collections, including one amphibian, three mammals, and seven reptiles, as well as 559 plants and more yet to be assessed. Based on our updated vegetation map, we find that the current PA network provides good coverage of the major habitats, particularly mangroves, spiny forest, humid forest, and tapia, but subhumid forest and grassland-woodland mosaic have very low areas under protection (5.7 and 1.8% respectively). OUTLOOK Madagascar is among the world’s poorest countries, and its biodiversity is a key resource for the sustainable future and well-being of its citizens. Current threats to Madagascar’s biodiversity are deeply rooted in historical and present social contexts, including widespread inequalities. We therefore propose five opportunities for action to further conservation in a just and equitable way. First, investment in conservation and restoration must be based on evidence and effectiveness and be tailored to meet future challenges through inclusive solutions. Second, expanded biodiversity monitoring, including increased dataset production and availability, is key. Third, improving the effectiveness of existing PAs—for example through community engagement, training, and income opportunities—is more important than creating new ones. Fourth, conservation and restoration should not focus solely on the PA network but should also include the surrounding landscapes and communities. And finally, conservation actions must address the root causes of biodiversity loss, including poverty and food insecurity. In the eyes of much of the world, Madagascar’s biodiversity is a unique global asset that needs saving; in the daily lives of many of the Malagasy people, it is a rapidly diminishing source of the most basic needs for subsistence. Protecting Madagascar’s biodiversity while promoting social development for its people is a matter of the utmost urgency Visual representation of five key opportunities for conserving and restoring Madagascar’s rapidly declining biodiversity identified in this Review. The dashed lines point to representative vegetation types where these recommendations could have tangible effects, but the opportunities are applicable across Madagascar. ILLUSTRATION: INESSA VOET 
    more » « less
  2. INTRODUCTION The Anthropocene is marked by an accelerated loss of biodiversity, widespread population declines, and a global conservation crisis. Given limited resources for conservation intervention, an approach is needed to identify threatened species from among the thousands lacking adequate information for status assessments. Such prioritization for intervention could come from genome sequence data, as genomes contain information about demography, diversity, fitness, and adaptive potential. However, the relevance of genomic data for identifying at-risk species is uncertain, in part because genetic variation may reflect past events and life histories better than contemporary conservation status. RATIONALE The Zoonomia multispecies alignment presents an opportunity to systematically compare neutral and functional genomic diversity and their relationships to contemporary extinction risk across a large sample of diverse mammalian taxa. We surveyed 240 species spanning from the “Least Concern” to “Critically Endangered” categories, as published in the International Union for Conservation of Nature’s Red List of Threatened Species. Using a single genome for each species, we estimated historical effective population sizes ( N e ) and distributions of genome-wide heterozygosity. To estimate genetic load, we identified substitutions relative to reconstructed ancestral sequences, assuming that mutations at evolutionarily conserved sites and in protein-coding sequences, especially in genes essential for viability in mice, are predominantly deleterious. We examined relationships between the conservation status of species and metrics of heterozygosity, demography, and genetic load and used these data to train and test models to distinguish threatened from nonthreatened species. RESULTS Species with smaller historical N e are more likely to be categorized as at risk of extinction, suggesting that demography, even from periods more than 10,000 years in the past, may be informative of contemporary resilience. Species with smaller historical N e also carry proportionally higher burdens of weakly and moderately deleterious alleles, consistent with theoretical expectations of the long-term accumulation and fixation of genetic load under strong genetic drift. We found weak support for a causative link between fixed drift load and extinction risk; however, other types of genetic load not captured in our data, such as rare, highly deleterious alleles, may also play a role. Although ecological (e.g., physiological, life-history, and behavioral) variables were the best predictors of extinction risk, genomic variables nonrandomly distinguished threatened from nonthreatened species in regression and machine learning models. These results suggest that information encoded within even a single genome can provide a risk assessment in the absence of adequate ecological or population census data. CONCLUSION Our analysis highlights the potential for genomic data to rapidly and inexpensively gauge extinction risk by leveraging relationships between contemporary conservation status and genetic variation shaped by the long-term demographic history of species. As more resequencing data and additional reference genomes become available, estimates of genetic load, estimates of recent demographic history, and accuracy of predictive models will improve. We therefore echo calls for including genomic information in assessments of the conservation status of species. Genomic information can help predict extinction risk in diverse mammalian species. Across 240 mammals, species with smaller historical N e had lower genetic diversity, higher genetic load, and were more likely to be threatened with extinction. Genomic data were used to train models that predict whether a species is threatened, which can be valuable for assessing extinction risk in species lacking ecological or census data. [Animal silhouettes are from PhyloPic] 
    more » « less
  3. Abstract

    Trees are pivotal to global biodiversity and nature’s contributions to people, yet accelerating global changes threaten global tree diversity, making accurate species extinction risk assessments necessary. To identify species that require expert-based re-evaluation, we assess exposure to change in six anthropogenic threats over the last two decades for 32,090 tree species. We estimated that over half (54.2%) of the assessed species have been exposed to increasing threats. Only 8.7% of these species are considered threatened by the IUCN Red List, whereas they include more than half of the Data Deficient species (57.8%). These findings suggest a substantial underestimation of threats and associated extinction risk for tree species in current assessments. We also map hotspots of tree species exposed to rapidly changing threats around the world. Our data-driven approach can strengthen the efforts going into expert-based IUCN Red List assessments by facilitating prioritization among species for re-evaluation, allowing for more efficient conservation efforts.

    more » « less
  4. Abstract

    Biological organisms are increasingly being introduced and eradicated in an effort to maintain biodiversity and ecosystem function in the face of anthropogenic threats. However, these conservation actions can have unintended consequences to non‐target species. Careful vetting of these actions using ecological modelling tools could help predict and avoid unintended consequences.

    Qualitative modelling tools, such as fuzzy interaction webs (FIWs), allow for qualitative rankings of community properties (e.g. interaction strength = high, medium, low) in combination with quantitative information to predict management outcomes. These tools have lower data requirements than strictly quantitative models, facilitating their use for communities lacking comprehensive parameterization. However, no studies have evaluated the efficacy of FIWs for predicting unintended consequences against empirically documented outcomes. Moreover, there is no process for systematically identifying which species to incorporate in community‐level conservation assessments to overcome model structure uncertainty. Finally, there is a need to make qualitative modelling tools more accessible for conservation practitioners.

    We applied FIWs to the case study of lake trout introduction into Yellowstone Lake, Yellowstone National Park, to assess its ability to predict documented community‐level outcomes from an intentional species introduction. Next, we used the case study of the intentional red squirrel introduction to Newfoundland to show how a community assessment framework can help define the community interaction web needed for applying a FIW. Lastly, we introduced a user‐friendly web interface ( for applying FIWs to conservation questions.

    We found that the FIW predicted previously documented directional changes in the abundance of community components relatively well in the Yellowstone Lake case study, even with minimal knowledge of the system. The community assessment framework provided a formal process for identifying community components for the Newfoundland case study, and the resulting FIW predicted documented unintended consequences. The user interface predicts realistic outcomes in our study system and allows managers to build and apply FIWs for conservation planning.

    Synthesis and applications. Our community assessment framework and user interface can be used to apply FIWs to identify and avert potential unintended outcomes of species introductions and eradications for improved conservation management.

    more » « less
  5. Abstract Background

    Globally, many undescribed fungal taxa reside in the hyperdiverse, yet undersampled, tropics. These species are under increasing threat from habitat destruction by expanding extractive industry, in addition to global climate change and other threats. Reserva Los Cedros is a primary cloud forest reserve of ~ 5256 ha, and is among the last unlogged watersheds on the western slope of the Ecuadorian Andes. No major fungal survey has been done there, presenting an opportunity to document fungi in primary forest in an underrepresented habitat and location. Above-ground surveys from 2008 to 2019 resulted in 1760 vouchered collections, cataloged and deposited at QCNE in Ecuador, mostly Agaricales sensu lato and Xylariales. We document diversity using a combination of ITS barcode sequencing and digital photography, and share the information via public repositories (GenBank & iNaturalist).


    Preliminary identifications indicate the presence of at least 727 unique fungal species within the Reserve, representing 4 phyla, 17 classes, 40 orders, 101 families, and 229 genera. Two taxa at Los Cedros have recently been recommended to the IUCN Fungal Red List Initiative (Thamnomyces chocöensisLæssøe and “Lactocollybia” aurantiacaSinger), and we add occurrence data for two others already under consideration (Hygrocybe aphyllaLæssøe & Boertm. andLamelloporus americanusRyvarden).


    Plants and animals are known to exhibit exceptionally high diversity and endemism in the Chocó bioregion, as the fungi do as well. Our collections contribute to understanding this important driver of biodiversity in the Neotropics, as well as illustrating the importance and utility of such data to conservation efforts.


    Antecedentes: A nivel mundial muchos taxones fúngicos no descritos residen en los trópicos hiper diversos aunque continúan submuestreados. Estas especies están cada vez más amenazadas por la destrucción del hábitat debido a la expansión de la industria extractivista además del cambio climático global y otras amenazas. Los Cedros es una reserva de bosque nublado primario de ~ 5256 ha y se encuentra entre las últimas cuencas hidrográficas no explotadas en la vertiente occidental de los Andes ecuatorianos. Nunca antes se ha realizado un estudio de diversidad micológica en el sitio, lo que significa una oportunidad para documentar hongos en el bosque primario, en hábitat y ubicación subrepresentatadas. El presente estudio recopila información entre el 2008 y 2019 muestreando material sobre todos los sustratos, reportando 1760 colecciones catalogadas y depositadas en el Fungario del QCNE de Ecuador, en su mayoría Agaricales sensu lato y Xylariales; además se documenta la diversidad mediante secuenciación de códigos de barras ITS y fotografía digital, la información está disponible en repositorios públicos digitales (GenBank e iNaturalist).Resultados:La identificación preliminar indica la presencia de al menos 727 especies únicas de hongos dentro de la Reserva, que representan 4 filos, 17 clases, 40 órdenes, 101 familias y 229 géneros. Recientemente dos taxones en Los Cedros se recomendaron a la Iniciativa de Lista Roja de Hongos de la UICN (Thamnomyces chocöensisLæssøe y“Lactocollybia” aurantiacaSinger) y agregamos datos de presencia de otros dos que ya estaban bajo consideración (Hygrocybe aphyllaLæssøe & Boertm. yLamelloporus americanusRyvarden).Conclusiones:Se sabe que plantas y animales exhiben una diversidad y endemismo excepcionalmente altos en la bioregión del Chocó y los hongos no son la excepción. Nuestras colecciones contribuyen a comprender este importante promotor de la biodiversidad en el Neotrópico además de ilustrar la importancia y utilidad de dichos datos para los esfuerzos de conservación.

    more » « less