skip to main content


Title: Exploring turbulence from the Sun to the local interstellar medium: Current challenges and perspectives for future space missions
Turbulence is ubiquitous in space plasmas. It is one of the most important subjects in heliospheric physics, as it plays a fundamental role in the solar wind—local interstellar medium interaction and in controlling energetic particle transport and acceleration processes. Understanding the properties of turbulence in various regions of the heliosphere with vastly different conditions can lead to answers to many unsolved questions opened up by observations of the magnetic field, plasma, pickup ions, energetic particles, radio and UV emissions, and so on. Several space missions have helped us gain preliminary knowledge on turbulence in the outer heliosphere and the very local interstellar medium. Among the past few missions, the Voyagers have paved the way for such investigations. This paper summarizes the open challenges and voices our support for the development of future missions dedicated to the study of turbulence throughout the heliosphere and beyond.  more » « less
Award ID(s):
2031611
NSF-PAR ID:
10392977
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
9
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The solar wind (SW) and local interstellar medium (LISM) are turbulent media. Their interaction is governed by complex physical processes and creates heliospheric regions with significantly different properties in terms of particle populations, bulk flow and turbulence. Our knowledge of the solar wind turbulence nature and dynamics mostly relies on near-Earth and near-Sun observations, and has been increasingly improving in recent years due to the availability of a wealth of space missions, including multi-spacecraft missions. In contrast, the properties of turbulence in the outer heliosphere are still not completely understood. In situ observations by Voyager and New Horizons , and remote neutral atom measurements by IBEX strongly suggest that turbulence is one of the critical processes acting at the heliospheric interface. It is intimately connected to charge exchange processes responsible for the production of suprathermal ions and energetic neutral atoms. This paper reviews the observational evidence of turbulence in the distant SW and in the LISM, advances in modeling efforts, and open challenges. 
    more » « less
  2. Abstract Interstellar pickup ions are an ubiquitous and thermodynamically important component of the solar wind plasma in the heliosphere. These PUIs are born from the ionization of the interstellar neutral gas, consisting of hydrogen, helium, and trace amounts of heavier elements, in the solar wind as the heliosphere moves through the local interstellar medium. As cold interstellar neutral atoms become ionized, they form an energetic ring beam distribution comoving with the solar wind. Subsequent scattering in pitch angle by intrinsic and self-generated turbulence and their advection with the radially expanding solar wind leads to the formation of a filled-shell PUI distribution, whose density and pressure relative to the thermal solar wind ions grows with distance from the Sun. This paper reviews the history of in situ measurements of interstellar PUIs in the heliosphere. Starting with the first detection in the 1980s, interstellar PUIs were identified by their highly nonthermal distribution with a cutoff at twice the solar wind speed. Measurements of the PUI distribution shell cutoff and the He focusing cone, a downwind region of increased density formed by the solar gravity, have helped characterize the properties of the interstellar gas from near-Earth vantage points. The preferential heating of interstellar PUIs compared to the core solar wind has become evident in the existence of suprathermal PUI tails, the nonadiabatic cooling index of the PUI distribution, and PUIs’ mediation of interplanetary shocks. Unlike the Voyager and Pioneer spacecraft, New Horizon’s Solar Wind Around Pluto (SWAP) instrument is taking the only direct measurements of interstellar PUIs in the outer heliosphere, currently out to $\sim47~\text{au}$ ∼ 47 au from the Sun or halfway to the heliospheric termination shock. 
    more » « less
  3. Abstract Our understanding of the interaction of the large-scale heliosphere with the local interstellar medium (LISM) has undergone a profound change since the very earliest analyses of the problem. In part, the revisions have been a consequence of ever-improving and widening observational results, especially those that identified the entrance of interstellar material and gas into the heliosphere. Accompanying these observations was the identification of the basic underlying physics of how neutral interstellar gas and interstellar charged particles of different energies, up to and including interstellar dust grains, interacted with the temporal flows and electromagnetic fields of the heliosphere. The incorporation of these various basic effects into global models of the interaction, whether focused on neutral interstellar gas and pickup ions, energetic particles such as anomalous and galactic cosmic rays, or magnetic fields and large-scale flows, has profoundly changed our view of how the heliosphere and LISM interact. This article presents a brief history of the conceptual and observation evolution of our understanding of the interaction of the heliosphere with the local interstellar medium, up until approximately 1996. 
    more » « less
  4. Abstract Interstellar neutrals (ISNs), pick-up ions (PUIs), and energetic neutral atoms (ENAs) are fundamental constituents of the heliosphere and its interaction with the neighboring interstellar medium. Here, we focus on selected aspects of present-day theory and modeling of these particles. In the last decades, progress in the understanding of the role of PUIs and ENAs for the global heliosphere and its interaction with very local interstellar medium is impressive and still growing. The increasing number of measurements allows for verification and continuing development of the theories and model attempts. We present an overview of various model descriptions of the heliosphere and the processes throughout it including the kinetic, fluid, and hybrid solutions. We also discuss topics in which interplay between theory, models, and interpretation of measurements reveals the complexity of the heliosphere and its understanding. They include model-based interpretation of the ISN, PUI, and ENA measurements conducted from the Earth’s vicinity. In addition, we describe selected processes beyond the Earth’s orbit up to the heliosphere boundary regions, where PUIs significantly contribute to the complex system of the global heliosphere and its interaction with the VLISM. 
    more » « less
  5. Abstract

    Interstellar neutral atoms enter the heliosphere at a relatively slow speed corresponding to the motion of the Sun through the local interstellar medium, which is approximately 25 km s−1. Neutral hydrogen atoms enter from the approximate location of the Voyager spacecraft and are eventually ionized primarily by collision with thermal solar wind ions. An earlier analysis by Hollick et al. examined low-frequency magnetic waves observed by the Voyager spacecraft from launch through 1990 that are thought to arise from the scattering of newborn interstellar pickup H+and He+. We report an analysis of Voyager 1 observations in 1991, which is the last year of high-resolution magnetic field data that are publicly available, and find 70 examples of low-frequency waves with the characteristics that suggest excitation by pickup H+and 10 examples of waves consistent with excitation by pickup He+. We find a particularly dense cluster of observations at the tail end of what is thought to be a Merged Interaction Region (MIR) that was previously studied by Burlaga & Ness using Voyager 2 observations. This is not unexpected if the MIR is followed by a large rarefaction region, as they tend to be regions of reduced turbulence levels that permit the growth of the waves over the long time periods that are generally required of this instability.

     
    more » « less