skip to main content


Title: The fluctuation–dissipation measurement instrument at the Linac Coherent Light Source
The development of new modes at x-ray free electron lasers has inspired novel methods for studying fluctuations at different energies and timescales. For closely spaced x-ray pulses that can be varied on ultrafast time scales, we have constructed a pair of advanced instruments to conduct studies targeting quantum materials. We first describe a prototype instrument built to test the proof-of-principle of resonant magnetic scattering using ultrafast pulse pairs. This is followed by a description of a new endstation, the so-called fluctuation–dissipation measurement instrument, which was used to carry out studies with a fast area detector. In addition, we describe various types of diagnostics for single-shot contrast measurements, which can be used to normalize data on a pulse-by-pulse basis and calibrate pulse amplitude ratios, both of which are important for the study of fluctuations in materials. Furthermore, we present some new results using the instrument that demonstrates access to higher momentum resolution.  more » « less
Award ID(s):
2044049
NSF-PAR ID:
10393111
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
93
Issue:
8
ISSN:
0034-6748
Page Range / eLocation ID:
083902
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inertial confinement fusion (ICF) holds increasing promise as a potential source of abundant, clean energy, but has been impeded by defects such as micro-voids in the ablator layer of the fuel capsules. It is critical to understand how these micro-voids interact with the laser-driven shock waves that compress the fuel pellet. At the Matter in Extreme Conditions (MEC) instrument at the Linac Coherent Light Source (LCLS), we utilized an x-ray pulse train with ns separation, an x-ray microscope, and an ultrafast x-ray imaging (UXI) detector to image shock wave interactions with micro-voids. To minimize the high- and low-frequency variations of the captured images, we incorporated principal component analysis (PCA) and image alignment for flat-field correction. After applying these techniques we generated phase and attenuation maps from a 2D hydrodynamic radiation code (xRAGE), which were used to simulate XPCI images that we qualitatively compare with experimental images, providing a one-to-one comparison for benchmarking material performance. Moreover, we implement a transport-of-intensity (TIE) based method to obtain the average projected mass density (areal density) of our experimental images, yielding insight into how defect-bearing ablator materials alter microstructural feature evolution, material compression, and shock wave propagation on ICF-relevant time scales. 
    more » « less
  2. Abstract By measuring a linear response function directly, such as the dynamic susceptibility, one can understand fundamental material properties. However, a fresh perspective can be offered by studying fluctuations. This can be related back to the dynamic susceptibility through the fluctuation–dissipation theorem, which relates the fluctuations in a system to its response, an alternate route to access the physics of a material. Here, we describe a new X-ray tool for material characterization that will offer an opportunity to uncover new physics in quantum materials using this theorem. We provide details of the method and discuss the requisite analysis techniques in order to capitalize on the potential to explore an uncharted region of phase space. This is followed by recent results on a topological chiral magnet, together with a discussion of current work in progress. We provide a perspective on future measurements planned for work in unconventional superconductivity. Graphical abstract We describe a new X-ray tool for material characterization that will offer an opportunity to uncover new physics in quantum materials using coherent, short-pulsed X-rays. We provide details of the method and discuss the requisite analysis techniques in order to capitalize on the potential to explore an uncharted region of phase space. This is followed by recent results on a topological chiral magnet, together with a discussion of current work in progress. We provide a perspective on future measurements planned for work in unconventional superconductivity. 
    more » « less
  3. ABSTRACT

    PSR J1641+8049 is a 2 ms black widow pulsar with the 2.2 h orbital period detected in the radio and γ-rays. We performed new phase-resolved multiband photometry of PSR J1641+8049 using the OSIRIS instrument at the Gran Telescopio Canarias. The obtained data were analysed together with the new radio-timing observations from the Canadian Hydrogen Intensity Mapping Experiment (CHIME), the X-ray data from the Spectrum-RG/eROSITA all-sky survey, and all available optical photometric observations. An updated timing solution based on CHIME data is presented, which accounts for secular and periodic modulations in pulse dispersion. The system parameters obtained through the light-curve analysis, including the distance to the source 4.6–4.8 kpc and the orbital inclination 56–59 deg, are found to be consistent with previous studies. However, the optical flux of the source at the maximum brightness phase faded by a factor of ∼2 as compared to previous observations. Nevertheless, the face of the J1641+8049 companion remains one of the most heated (8000–9500 K) by a pulsar among the known black widow pulsars. We also report a new estimation on the pulsar proper motion of ≈2 mas yr−1, which yields a spin-down luminosity of ≈4.87 × 1034 erg s−1 and a corresponding heating efficiency of the companion by the pulsar of 0.3–0.7. The pulsar was not detected in X-rays implying its X-ray-luminosity was $\lesssim$3 × 1031 erg s−1 at the date of observations.

     
    more » « less
  4. Attosecond pulses formed by high order harmonics (HHs) of an infrared (IR) laser field is a powerful tool for studying and controlling ultrafast dynamics of electrons in atoms, molecules and solids at its intrinsic time-scale. However, in the X-ray range the energy of attosecond pulses is rather limited. Their amplification is an important but very challenging problem since none of the existing amplifiers can support the corresponding PHz bandwidth. In our previous work [1] we proposed a method for the attosecond pulse amplification in hydrogen-like active medium of a recombination plasma-based X-ray laser dressed by a replica of the fundamental frequency IR field used for the HH generation. Due to the IRfield-induced sub-laser-cycle Stark shift and splitting of the lasing energy levels the gain of the active medium is redistributed over the combination frequencies, separated from the resonance by even multiples of the frequency of the IR field. If the incident HHs forming an attosecond pulse train are tuned in resonance with the induced gain lines and the active plasma medium is strongly dispersive for the modulating IR field, then during the amplification the relative phases of harmonics and (under the optimal choice of the IR field strength) the shape of the amplified pulses will be preserved. In the present work we show the possibility of boosting the efficiency of HH amplification by modulating the active medium of an X-ray laser with the second harmonic of the fundamental frequency IR field. We show that under the action of a laser field (with arbitrary frequency) the gain redistribution occurs not only over the even combination frequencies discussed in [1], but also over the odd frequencies separated from the resonance by odd multiples of the laser frequency. Besides, nearly half of the medium gain is contained in the even induced gain lines, and nearly half in the odd. If the modulating field is the second harmonic of the IR field, used for the generation the HHs and attosecond pulses, then the seeding HHs can be tuned in resonance with both even and odd gain lines simultaneously, which will make the overall gain much higher as compared to the previously considered case of the fundamental frequency modulating field (when only the even gain lines play the role). By the example of the C5+ X-ray laser with 3.38 nm wavelength of the inverted transition we show the possibility of increasing the efficiency of 430 as pulse amplification by 8.5 times when the active medium is modulated with the second harmonic of the fundamental frequency IR field with wavelength 2.1 µm. 
    more » « less
  5. Abstract Recent experiments continue to find evidence for a liquid-liquid phase transition (LLPT) in supercooled water, which would unify our understanding of the anomalous properties of liquid water and amorphous ice. These experiments are challenging because the proposed LLPT occurs under extreme metastable conditions where the liquid freezes to a crystal on a very short time scale. Here, we analyze models for the LLPT to show that coexistence of distinct high-density and low-density liquid phases may be observed by subjecting low-density amorphous (LDA) ice to ultrafast heating. We then describe experiments in which we heat LDA ice to near the predicted critical point of the LLPT by an ultrafast infrared laser pulse, following which we measure the structure factor using femtosecond x-ray laser pulses. Consistent with our predictions, we observe a LLPT occurring on a time scale < 100 ns and widely separated from ice formation, which begins at times >1 μs. 
    more » « less