skip to main content


Title: Magnetically driven coupling in relativistic radiation-mediated shocks
ABSTRACT

The radiation drag in photon-rich environments of cosmic explosions can seed kinetic instabilities by inducing velocity spreads between relativistically streaming plasma components. Such microturbulence is likely imprinted on the breakout signals of radiation-mediated shocks. However, large-scale, transverse magnetic fields in the deceleration region of the shock transition can suppress the dominant kinetic instabilities by preventing the development of velocity separations between electron–positron pairs and a heavy ion species. We use a 1D five-fluid radiative transfer code to generate self-consistent profiles of the radiation drag force and plasma composition in the deceleration region. For increasing magnetization, our models predict rapidly growing pair multiplicities and a substantial radiative drag developing self-similarly throughout the deceleration region. We extract the critical magnetization parameter σc, determining the limiting magnetic field strength at which a three-species plasma can develop kinetic instabilities before reaching the isotropized downstream. For a relativistic, single ion plasma drifting with γu = 10 in the upstream of a relativistic radiation-mediated shock, we find the threshold σc ≈ 10−7 for the onset of microturbulence. Suppression of plasma instabilities in the case of multi-ion composition would likely require much higher values of σc. Identifying high-energy signatures of microturbulence in shock breakout signals and combining them with the magnetization limits provided in this work will allow a deeper understanding of the magnetic environment of cosmic explosions like supernovae, gamma-ray bursts, and neutron star binary mergers.

 
more » « less
Award ID(s):
2206610 2206607
NSF-PAR ID:
10393257
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
519
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 6126-6137
Size(s):
["p. 6126-6137"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Relativistic radiation-mediated shocks are likely formed in prodigious cosmic explosions. The structure and emission of such shocks are regulated by copious production of electron–positron pairs inside the shock-transition layer. It has been pointed out recently that substantial abundance of positrons inside the shock leads to a velocity separation of the different plasma constituents, which is expected to induce a rapid growth of plasma instabilities. In this paper, we study the hierarchy of plasma microinstabilities growing in an electron-ion plasma loaded with pairs and subject to a radiation force. Linear stability analysis indicates that such a system is unstable to the growth of various plasma modes which ultimately become dominated by a current filamentation instability driven by the relative drift between the ions and the pairs. These results are validated by particle-in-cell simulations that further probe the non-linear regime of the instabilities, and the pair-ion coupling in the microturbulent electromagnetic field. Based on this analysis, we derive a reduced-transport equation for the particles via pitch-angle scattering in the microturbulence and demonstrate that it can couple the different species and lead to non-adiabatic compression via a Joule-like heating. The heating of the pairs and, conceivably, the formation of non-thermal distributions, arising from the microturbulence, can affect the observed shock-breakout signal in ways unaccounted for by current single-fluid models.

     
    more » « less
  2. We summarize recent attempts to unravel the role of plasma kinetic effects in radiation mediated shocks. Such shocks form in all strong stellar explosions and are responsible for the early electromagnetic emission released from these events. A key issue that has been overlooked in all previous works is the nature of the coupling between the charged leptons, that mediate the radiation force, and the ions, which are the dominant carriers of the shock energy. Our preliminary investigation indicates that in the case of relativistic shocks, as well as Newtonian shocks in multi-ion plasma, this coupling is driven by either, transverse magnetic fields of a sufficiently magnetized upstream medium, or plasma microturbulence if strong enough magnetic fields are absent. We discuss the implications for the shock breakout signal, as well as abundance evolution and kilonova emission in binary neutron star mergers. 
    more » « less
  3. ABSTRACT

    The time evolution of high-energy synchrotron radiation generated in a relativistic pair plasma energized by reconnection of strong magnetic fields is investigated with 2D and 3D particle-in-cell (PIC) simulations. The simulations in this 2D/3D comparison study are conducted with the radiative PIC code OSIRIS, which self-consistently accounts for the synchrotron radiation reaction on the emitting particles, and enables us to explore the effects of synchrotron cooling. Magnetic reconnection causes compression of the plasma and magnetic field deep inside magnetic islands (plasmoids), leading to an enhancement of the flaring emission, which may help explain some astrophysical gamma-ray flare observations. Although radiative cooling weakens the emission from plasmoid cores, it facilitates additional compression there, further amplifying the magnetic field B and plasma density n, and thus partially mitigating this effect. Novel simulation diagnostics utilizing 2D histograms in the n-B space are developed and used to visualize and quantify the effects of compression. The n-B histograms are observed to be bounded by relatively sharp power-law boundaries marking clear limits on compression. Theoretical explanations for some of these compression limits are developed, rooted in radiative resistivity or 3D kinking instabilities. Systematic parameter-space studies with respect to guide magnetic field, system size, and upstream magnetization are conducted and suggest that stronger compression, brighter high-energy radiation, and perhaps significant quantum electrodynamic effects such as pair production, may occur in environments with larger reconnection-region sizes and higher magnetization, particularly when magnetic field strengths approach the critical (Schwinger) field, as found in magnetar magnetospheres.

     
    more » « less
  4. null (Ed.)
    Context. The spectrum of cosmic ray protons and electrons released by supernova remnants throughout their evolution is poorly known because of the difficulty in accounting for particle escape and confinement downstream of a shock front, where both adiabatic and radiative losses are present. Since electrons lose energy mainly through synchrotron losses, it is natural to ask whether the spectrum released into the interstellar medium may be different from that of their hadronic counterpart. Independent studies of cosmic ray transport through the Galaxy require that the source spectrum of electrons and protons be very different. Therefore, the above question acquires a phenomenological relevance. Aims. Here we calculate the spectrum of cosmic ray protons released during the evolution of supernovae of different types, accounting for the escape from the upstream region and for adiabatic losses of particles advected downstream of the shock and liberated at later times. The same calculation is carried out for electrons, where in addition to adiabatic losses we take the radiative losses suffered behind the shock into account. These electrons are dominated by synchrotron losses in the magnetic field, which most likely is self-generated by cosmic rays accelerated at the shock. Methods. We use standard temporal evolution relations for supernova shocks expanding in different types of interstellar media together with an analytic description of particle acceleration and magnetic field amplification to determine the density and spectrum of cosmic ray particles. Their evolution in time is derived by numerically solving the equation describing advection with adiabatic and radiative losses for electrons and protons. The flux from particles continuously escaping the supernova remnants is also accounted for. Results. The magnetic field in the post-shock region is calculated by using an analytic treatment of the magnetic field amplification due to nonresonant and resonant streaming instability and their saturation. The resulting field is compared with the available set of observational results concerning the dependence of the magnetic field strength upon shock velocity. We find that when the field is the result of the growth of the cosmic-ray-driven nonresonant instability alone, the spectrum of electrons and protons released by a supernova remnant are indeed different; however, such a difference becomes appreciable only at energies ≳100−1000 GeV, while observations of the electron spectrum require such a difference to be present at energies as low as ∼10 GeV. An effect at such low energies requires substantial magnetic field amplification in the late stages of supernova remnant evolution (shock velocity ≪1000 km s −1 ); this may not be due to streaming instability but rather hydrodynamical processes. We comment on the feasibility of such conditions and speculate on the possibility that the difference in spectral shape between electrons and protons may reflect either some unknown acceleration effect or additional energy losses in cocoons around the sources. 
    more » « less
  5. ABSTRACT

    Recently, particle-in-cell (PIC) simulations have shown that relativistic turbulence in collisionless plasmas can result in an equilibrium particle distribution function where turbulent heating is balanced by radiative cooling of electrons. Strongly magnetized plasmas are characterized by higher energy peaks and broader particle distributions. In relativistically moving astrophysical jets, it is believed that the flow is launched Poynting flux dominated and that the resulting magnetic instabilities may create a turbulent environment inside the jet, i.e. the regime of relativistic turbulence. In this paper, we extend previous PIC simulation results to larger values of plasma magnetization by linearly extrapolating the diffusion and advection coefficients relevant for the turbulent plasmas under consideration. We use these results to build a single-zone turbulent jet model that is based on the global parameters of the blazar emission region, and consistently calculate the particle distribution and the resulting emission spectra. We then test our model by comparing its predictions with the broad-band quiescent emission spectra of a dozen blazars. Our results show good agreement with observations of low synchrotron peaked (LSP) sources and find that LSPs are moderately Poynting flux dominated with magnetization 1 ≲ σ ≲ 5, have bulk Lorentz factor Γj ∼ 10–30, and that the turbulent region is located at the edge, or just beyond the broad-line region (BLR). The turbulence is found to be driven at an area comparable to the jet cross-section.

     
    more » « less