skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temporal asymmetries and interactions between dorsal and ventral visual pathways during object recognition
Abstract Despite their anatomical and functional distinctions, there is growing evidence that the dorsal and ventral visual pathways interact to support object recognition. However, the exact nature of these interactions remains poorly understood. Is the presence of identity-relevant object information in the dorsal pathway simply a byproduct of ventral input? Or, might the dorsal pathway be a source of input to the ventral pathway for object recognition? In the current study, we used high-density EEG—a technique with high temporal precision and spatial resolution sufficient to distinguish parietal and temporal lobes—to characterise the dynamics of dorsal and ventral pathways during object viewing. Using multivariate analyses, we found that category decoding in the dorsal pathway preceded that in the ventral pathway. Importantly, the dorsal pathway predicted the multivariate responses of the ventral pathway in a time-dependent manner, rather than the other way around. Together, these findings suggest that the dorsal pathway is a critical source of input to the ventral pathway for object recognition.  more » « less
Award ID(s):
2123069
PAR ID:
10393607
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Cerebral Cortex Communications
Volume:
4
Issue:
1
ISSN:
2632-7376
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S (Ed.)
    The human visual system uses two parallel pathways for spatial processing and object recognition. In contrast, computer vision systems tend to use a single feedforward pathway, rendering them less robust, adaptive, or efficient than human vision. To bridge this gap, we developed a dual-stream vision model inspired by the human eyes and brain. At the input level, the model samples two complementary visual patterns to mimic how the human eyes use magnocellular and parvocellular retinal ganglion cells to separate retinal inputs to the brain. At the backend, the model processes the separate input patterns through two branches of convolutional neural networks (CNN) to mimic how the human brain uses the dorsal and ventral cortical pathways for parallel visual processing. The first branch (WhereCNN) samples a global view to learn spatial attention and control eye movements. The second branch (WhatCNN) samples a local view to represent the object around the fixation. Over time, the two branches interact recurrently to build a scene representation from moving fixations. We compared this model with the human brains processing the same movie and evaluated their functional alignment by linear transformation. The WhereCNN and WhatCNN branches were found to differentially match the dorsal and ventral pathways of the visual cortex, respectively, primarily due to their different learning objectives, rather than their distinctions in retinal sampling or sensitivity to attention-driven eye movements. These model-based results lead us to speculate that the distinct responses and representations of the ventral and dorsal streams are more influenced by their distinct goals in visual attention and object recognition than by their specific bias or selectivity in retinal inputs. This dual-stream model takes a further step in brain-inspired computer vision, enabling parallel neural networks to actively explore and understand the visual surroundings. 
    more » « less
  2. null (Ed.)
    According to the influential “Two Visual Pathways” hypothesis, the cortical visual system is segregated into two pathways, with the ventral, occipitotemporal pathway subserving object perception, and the dorsal, occipitoparietal pathway subserving the visuomotor control of action. However, growing evidence suggests that the dorsal pathway also plays a functional role in object perception. In the current article, we present evidence that the dorsal pathway contributes uniquely to the perception of a range of visuospatial attributes that are not redundant with representations in ventral cortex. We describe how dorsal cortex is recruited automatically during perception, even when no explicit visuomotor response is required. Importantly, we propose that dorsal cortex may selectively process visual attributes that can inform the perception of potential actions on objects and environments, and we consider plausible developmental and cognitive mechanisms that might give rise to these representations. As such, we consider whether naturalistic stimuli, such as real-world solid objects, might engage dorsal cortex more so than simplified or artificial stimuli such as images that do not afford action, and how the use of suboptimal stimuli might limit our understanding of the functional contribution of dorsal cortex to visual perception. 
    more » « less
  3. Summary The mandibular or first pharyngeal arch forms the upper and lower jaws in all gnathostomes. A gene regulatory network that defines ventral, intermediate, and dorsal domains along the dorsal–ventral (D–V) axis of the arch has emerged from studies in zebrafish and mice, but the temporal dynamics of this process remain unclear. To define cell fate trajectories in the arches we have performed quantitative gene expression analyses of D–V patterning genes in pharyngeal arch primordia in zebrafish and mice. Using NanoString technology to measure transcript numbers per cell directly we show that, in many cases, genes expressed in similar D–V domains and induced by similar signals vary dramatically in their temporal profiles. This suggests that cellular responses to D‐V patterning signals are likely shaped by the baseline kinetics of target gene expression. Furthermore, similarities in the temporal dynamics of genes that occupy distinct pathways suggest novel shared modes of regulation. Incorporating these gene expression kinetics into our computational models for the mandibular arch improves the accuracy of patterning, and facilitates temporal comparisons between species. These data suggest that the magnitude and timing of target gene expression help diversify responses to patterning signals during craniofacial development. 
    more » « less
  4. Object recognition is the process by which humans organize the visual world into meaningful perceptual units. In this Review, we examine the developmental origins and maturation of object recognition by synthesizing research from developmental psychology, cognitive neuroscience and computational modelling. We describe the extent to which infants demonstrate early traces of adult visual competencies within their first year. The rapid development of these competencies is supported by infant-specific biological and experiential constraints, including blurry vision and ‘self-curation’ of object viewpoints that best support learning. We also discuss how the neural mechanisms that support object-recognition abilities in infancy seem to differ from those in adulthood, with less engagement of the ventral visual pathway. We conclude that children’s specific developmental niche shapes early object-recognition abilities 
    more » « less
  5. Classical studies of attention have identified areas of parietal and frontal cortex as sources of attentional control. Recently, a ventral region in the macaque temporal cortex, the posterior infero-temporal dorsal area PITd, has been suggested as a third attentional control area. This raises the question of whether and how spatially distant areas coordinate a joint focus of attention. Here we tested the hypothesis that parieto-frontal attention areas and PITd are directly interconnected. By combining functional MRI with ex-vivo high-resolution diffusion MRI, we found that PITd and dorsal attention areas are all directly connected through three specific fascicles. These results ascribe a new function, the communication of attention signals, to two known fiber-bundles, highlight the importance of vertical interactions across the two visual streams, and imply that the control of endogenous attention, hitherto thought to reside in macaque dorsal cortical areas, is exerted by a dorso-ventral network. 
    more » « less