skip to main content

This content will become publicly available on July 1, 2023

Title: Two-dimensional finite element network analysis: Formulation and static analysis of structural assemblies
Authors:
;
Award ID(s):
1621909
Publication Date:
NSF-PAR ID:
10393854
Journal Name:
Computers & Structures
Volume:
266
Issue:
C
Page Range or eLocation-ID:
106784
ISSN:
0045-7949
Sponsoring Org:
National Science Foundation
More Like this
  1. Ruis, Andrew R. ; Lee, Seung B. (Ed.)
    While there has been much growth in the use of microblogging platforms (e.g., Twitter) to share information on a range of topics, researchers struggle to analyze the large volumes of data produced on such platforms. Established methods such as Sentiment Analysis (SA) have been criticized over their inaccuracy and limited analytical depth. In this exploratory methodological paper, we propose a combination of SA with Epistemic Network Analysis (ENA) as an alternative approach for providing richer qualitative and quantitative insights into Twitter discourse. We illustrate the application and potential use of these approaches by visualizing the differences between tweets directed or discussing Democrats and Republicans after the COVID-19 Stimulus Package announcement in the US. SA was integrated into ENA models in two ways: as a part of the blocking variable and as a set of codes. Our results suggest that incorporating SA into ENA allowed for a better understanding of how groups viewed the components of the stimulus issue by splitting them by sentiment and enabled a meaningful inclusion of data with singular subject focus into the ENA models.