skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Technical debt resulting from architectural degradation and code smells: a systematic mapping study
Poor design choices, bad coding practices, or the need to produce software quickly can stand behind technical debt. Unfortunately, manually identifying and managing technical debt gets more difficult as the software matures. Recent research offers various techniques to automate the process of detecting and managing technical debt to address these challenges. This manuscript presents a mapping study of the many aspects of technical debt that have been discovered in this field of study. This includes looking at the various forms of technical debt, as well as detection methods, the financial implications, and mitigation strategies. The findings and outcomes of this study are applicable to a wide range of software development life-cycle decisions.  more » « less
Award ID(s):
1854049
PAR ID:
10393892
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ACM SIGAPP Applied Computing Review
Volume:
21
Issue:
4
ISSN:
1559-6915
Page Range / eLocation ID:
20 to 36
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Architecture debt is a form of technical debt that derives from the gap between the intended and the actual architecture design. In this study we measured architecture debt in two ways: 1) in terms of system-wide coupling measures, and 2) in terms of the number and severity of architecture flaws. In recent research it was shown that the amount of architecture debt has a huge impact on software maintainability and evolution. Consequently, reducing debt is expected to make software less costly and more amenable to change. This paper reports on a longitudinal study of a healthcare communications product created by BrightSquid Secure Communications Corp. This young company is facing the typical trade-off problem of desiring responsiveness to change requests, but wanting to avoid the ever-increasing effort that the accumulation of quick-and- dirty changes eventually incurs. In the first stage of the study, we analyzed the status of the “before” system, which showed the impacts of change requests. This initial study motivated a more in-depth analysis of architecture debt. The results of this debt analysis were used in the second stage of the work to motivate a comprehensive refactoring of the software system. The third stage was a follow-on architecture debt analysis which quantified the improvements realized. Using this quantitative evidence, augmented by qualitative evidence gathered from in- depth interviews with BrightSquid’s architects, we present lessons learned about the costs and benefits of paying down architecture debt in practice. 
    more » « less
  2. null (Ed.)
    Context: Managing technical debt (TD) associated with external cybersecurity attacks on an organization can significantly improve decisions made when prioritizing which security weaknesses require attention. Whilst source code vulnerabilities can be found using static analysis techniques, malicious external attacks expose the vulnerabilities of a system at runtime and can sometimes remain hidden for long periods of time. By mapping malicious attack tactics to the consequences of weaknesses (i.e. exploitable source code vulnerabilities) we can begin to understand and prioritize the refactoring of the source code vulnerabilities that cause the greatest amount of technical debt on a system. Goal: To establish an approach that maps common external attack tactics to system weaknesses. The consequences of a weakness associated with a specific attack technique can then be used to determine the technical debt principal of said violation; which can be measured in terms of loss of business rather than source code maintenance. Method: We present a position study that uses Jaccard similarity scoring to examine how 11 malicious attack tactics can relate to Common Weakness Enumerations (CWEs). Results: We conduct a study to simulate attacks, and generate dependency graphs between external attacks and the technical consequences associated with CWEs. Conclusion: The mapping of cyber security attacks to weaknesses allows operational staff (SecDevOps) to focus on deploying appropriate countermeasures and allows developers to focus on refactoring the vulnerabilities with the greatest potential for technical debt. 
    more » « less
  3. Code intelligence tools such as GitHub Copilot have begun to bridge the gap between natural language and programming language. A frequent software development task is the management of technical debts, which are suboptimal solutions or unaddressed issues which hinder future software development. Developers have been found to ``self-admit'' technical debts (SATD) in software artifacts such as source code comments. Thus, is it possible that the information present in these comments can enhance code generative prompts to repay the described SATD? Or, does the inclusion of such comments instead cause code generative tools to reproduce the harmful symptoms of described technical debt? Does the modification of SATD impact this reaction? Despite the heavy maintenance costs caused by technical debt and the recent improvements of code intelligence tools, no prior works have sought to incorporate SATD towards prompt engineering. Inspired by this, this paper contributes and analyzes a dataset consisting of 36,381 TODO comments in the latest available revisions of their respective 102,424 repositories, from which we sample and manually generate 1,140 code bodies using GitHub Copilot. Our experiments show that GitHub Copilot can generate code with the symptoms of SATD, both prompted and unprompted. Moreover, we demonstrate the tool's ability to automatically repay SATD under different circumstances and qualitatively investigate the characteristics of successful and unsuccessful comments. Finally, we discuss gaps in which GitHub Copilot's successors and future researchers can improve upon code intelligence tasks to facilitate AI-assisted software maintenance. 
    more » « less
  4. Context: Managing technical debt (TD) associated with potential security breaches found during design can lead to catching vulnerabilities (i.e., exploitable weaknesses) earlier in the software lifecycle; thus, anticipating TD principal and interest that can have decidedly negative impacts on businesses. Goal: To establish an approach to help assess TD associated with security weaknesses by leveraging the Common Weakness Enumeration (CWE) and its scoring mechanism, the Common Weakness Scoring System (CWSS). Method: We present a position study with a five-step approach employing the Quamoco quality model to operationalize the scoring of architectural CWEs. Results: We use static analysis to detect design level CWEs, calculate their CWSS scores, and provide a relative ranking of weaknesses that help practitioners identify the highest risks in an organization with a potential to impact TD. Conclusion: CWSS is a community agreed upon method that should be leveraged to help inform the ranking of security related TD items. 
    more » « less
  5. In this paper we reflect on our decade-long journey of creating, evolving, and evaluating a number of software design concepts and technical debt management technologies. These include: a novel maintainability metric, a new model for representing design information, a suite of design anti-patterns, and a formalized model of design debt. All of these concepts are rooted in options theory, and they all share the objective of helping a software project team quantify and visualize major design principles, and address the very real maintainability challenges faced by their organizations in practice. The evolution of our research has been propelled by our continuous interactions with industrial collaborators. For each concept, technology, and supporting tool, we embarked on an ambitious program of empirical validation—in “the lab”, with industry partners, and with open source projects. We reflect on the successes of this research and on areas where significant challenges remain. In particular, we observe that improved software design education, both for students and professional developers, is the prerequisite for our research and technology to be widely adopted. During this journey, we also observed a number of gaps: between what we offer in research and what practitioners need, between management and development, and between debt detection and debt reduction. Addressing these challenges motivates our research moving forward. 
    more » « less