We present a one‐pot colloidal synthesis method for producing monodisperse multi‐metal (Co, Mn, and Fe) spinel nanocrystals (NCs), including nanocubes, nano‐octahedra, and concave nanocubes. This study explores the mechanism of morphology control, showcasing the pivotal roles of metal precursors and capping ligands in determining the exposed crystal planes on the NC surface. The cubic spinel NCs, terminated with exclusive {100}‐facets, demonstrate superior electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline media compared to their octahedral and concave cubic counterparts. Specifically, at 0.85 V, (CoMn)Fe2O4spinel oxide nanocubes achieve a high mass activity of 23.9 A/g and exhibit excellent stability, highlighting the promising ORR performance associated with {100}‐facets of multi‐metal spinel oxides over other low‐index and high‐index facets. Motivated by exploring the correlation between ORR performance and surface atom arrangement (active sites), surface element composition, as well as other factors, this study introduces a prospective approach for shape‐controlled synthesis of advanced spinel oxide NCs. It underscores the significance of catalyst shape control and suggests potential applications as nonprecious metal ORR electrocatalysts.
- Award ID(s):
- 1808383
- PAR ID:
- 10166597
- Date Published:
- Journal Name:
- MRS Advances
- Volume:
- 5
- Issue:
- 11
- ISSN:
- 2059-8521
- Page Range / eLocation ID:
- 523 to 529
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Gold (Au)- and ceria (CeO2)-based catalysts are amongst the most active catalysts for the gas phase CO oxidation reaction. Nevertheless, nanosized Au and CeO2catalysts may encounter heat-induced sintering in thermochemical catalytic reactions. Herein, we report on the rational one-pot synthesis of ceria-reduced graphene oxide (CeO2-RGO) using a facile ethylenediamine (EDA)-assisted solvothermal method. Standalone RGO and free-standing CeO2were also prepared using the same EDA-assisted method for comparison. We then incorporated Au into the prepared samples by colloidal reduction and evaluated the catalytic activity of the different catalysts for CO oxidation. The RGO-supported CeO2surpassed the free-standing CeO2, exhibiting a 100% CO conversion at 285oC compared to 340oC in the case of CeO2. Interestingly, the RGO-supported Au/CeO2catalysts outperformed the Au/CeO2catalysts and achieved a 100% CO conversion at 76oC compared to 113oC in the case of Au/CeO2. Additionally, the Au/CeO2-RGO catalyst demonstrated remarkable room-temperature activity with simultaneous 72% CO conversion. This outstanding performance was attributed to the unique dispersion and size characteristics of the RGO-supported CeO2and Au catalysts in the ternary Au/CeO2-RGO nanocomposite, as revealed by TEM and XPS, among other techniques.
-
ABSTRACT We report a facile method to fabricate CuNi nano-octahedra and nanocubes using a colloidal synthesis approach. The CuNi nanocrystals terminated with exclusive crystallographic facets were controlled and achieved by a group of synergetic capping ligands in a hot solution system. Specifically, the growth of {111}-bounded CuNi nano-octahedra is derived by a thermodynamic control, whereas the generation of {100}-terminated CuNi nanocubes is steered by a kinetic capping of chloride. Using a reduction of 4-nitrophenol with sodium borohydride as a model reaction, CuNi nano-octahedra and nanocubes demonstrated a strong facet-dependence due to their different surface energies although both exhibited remarkable catalytic activity with the high rate constant over mass (k/m). A kinetic study indicated that this is a pseudo first-order reaction with an excess of sodium borohydride. CuNi nanocubes as the catalysts showed better catalytic performance (k/m = 385 s -1 •g -1 ) than the CuNi nano-octahedra (k/m = 120 s -1 •g -1 ), indicating that 4-nitrophenol and hydrogen were adsorbed on the {100} facets with their molecules parallel to the surface much easier than those on {111} facets.more » « less
-
Gamma alumina (γ-Al2O3) is widely used as a catalyst and catalytic support due to its high specific surface area and porosity. However, synthesis of γ-Al2O3 nanocrystals is often a complicated process requiring high temperatures or additional post-synthetic steps. Here, we report a single-step synthesis of size-controlled and monodisperse, facetted γ-Al2O3 nanocrystals in an inductively coupled nonthermal plasma reactor using trimethylaluminum and oxygen as precursors. Under optimized conditions, we observed phase-pure, cuboctahedral γ-Al2O3 nanocrystals with defined surface facets. Nuclear magnetic resonance studies revealed that nanocrystal surfaces are populated with AlO6, AlO5 and AlO4 units with clusters of hydroxyl groups. Nanocrystal size tuning was achieved by varying the total reactor pressure yielding particles as small as 3.5 nm, below the predicted thermodynamic stability limit for γ-Al2O3.
-
Surface Capping Agents and Their Roles in Shape‐Controlled Synthesis of Colloidal Metal Nanocrystals
Abstract Surface capping agents have been extensively used to control the evolution of seeds into nanocrystals with diverse but well‐controlled shapes. Here we offer a comprehensive review of these agents, with a focus on the mechanistic understanding of their roles in guiding the shape evolution of metal nanocrystals. We begin with a brief introduction to the early history of capping agents in electroplating and bulk crystal growth, followed by discussion of how they affect the thermodynamics and kinetics involved in a synthesis of metal nanocrystals. We then present representative examples to highlight the various capping agents, including their binding selectivity, molecular‐level interaction with a metal surface, and impacts on the growth of metal nanocrystals. We also showcase progress in leveraging capping agents to generate nanocrystals with complex structures and/or enhance their catalytic properties. Finally, we discuss various strategies for the exchange or removal of capping agents, together with perspectives on future directions.