skip to main content


Title: Students' technological ambivalence toward online proctoring and the need for responsible use of educational technologies
Abstract Background

COVID‐19 has led to an unprecedented increase in the use of technology for teaching and learning in higher education institutions (HEIs), including in engineering, computing, and technology programs. Given the urgency of the situation, technologies were often implemented with a short‐term rather than long‐term view.

Purpose

In this study, we investigate students' perceptions of the use of video‐based monitoring (VbM) for proctoring exams to better assess its impact on students. We leverage technological ambivalence as a framing lens to analyze students' experiences and perceptions of using VbM and draw implications for responsible use of educational technology.

Method

Qualitative data were collected from students using focus group interviews and discussion board assignments and analyzed inductively to understand students' experiences.

Findings

We present a framework of how a technological shift of existing practice triggered ambivalence that manifested itself as a sustained negative outlook among students regarding the use of VbM, as well as their institution and instructors. Students accepted the inevitability of the technology but were unconvinced that the benefits of VbM outweighed its risks.

Conclusions

As instructors use educational technologies that are inherently driven by user data and algorithms that are not transparent, it is imperative that they are attentive to the responsible use of technology. To educate future engineers who are ethically and morally responsible, engineering educators and engineering institutions need to exhibit that behavior in their own practices, starting with their use of educational technologies.

 
more » « less
Award ID(s):
1937950 1954556
NSF-PAR ID:
10393995
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Engineering Education
Volume:
112
Issue:
1
ISSN:
1069-4730
Page Range / eLocation ID:
p. 221-242
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Due to the COVID-19 pandemic, many universities moved to emergency remote teaching (ERT). This allowed institutions to continue their instruction despite not being in person. However, ERT is not without consequences. For example, students may have inadequate technological supports, such as reliable internet and computers. Students may also have poor learning environments at home and may need to find added employment to support their families. In addition, there are consequences to faculty. It has been shown that female instructors are more disproportionately impacted in terms of mental health issues and increased domestic labor. This research aims to investigate instructors’ and students’ perceptions of their transition to ERT. Specifically, during the transition to ERT at a research-intensive, Minority-Serving Institution (MSI), we wanted to: (1) Identify supports and barriers experienced by instructors and students. (2) Compare instructors’ experiences with the students’ experiences. (3) Explore these supports and barriers within the context ofsocial presence,teaching presence, and/orcognitive presenceas well as how these supports and barriers relate toscaffoldingin STEM courses.

    Results

    Instructors identified twice as many barriers as supports in their teaching during the transition to ERT and identified casual and formal conversations with colleagues as valuable supports. Emerging categories for barriers consisted of academic integrity concerns as well as technological difficulties. Similarly, students identified more barriers than supports in their learning during the transition to ERT. More specifically, students described pre-existing course structure, classroom technology, and community as best supporting their learning. Barriers that challenged student learning included classroom environment, student availability, and student emotion and comfort.

    Conclusions

    Together, this research will help us understand supports and barriers to teaching and learning during the transition to ERT. This understanding can help us better plan and prepare for future emergencies, particularly at MSIs, where improved communication and increased access to resources for both students and instructors are key.

     
    more » « less
  2. Asynchronous online courses are popular because they offer benefits to both students and instructors. Students benefit from the convenience, flexibility, affordability, freedom of geography, and access to information. Instructors and institutions benefit by having a broad geographical reach, scalability, and cost-savings of no physical classroom. A challenge with asynchronous online courses is providing students with engaging, collaborative and interactive experiences. Here, we describe how an online poster symposium can be used as a unique educational experience and assessment tool in a large-enrollment (e.g., 500 students), asynchronous, natural science, general education (GE) course. The course, Introduction to Environmental Science (ENR2100), was delivered using distance education (DE) technology over a 15-week semester. In ENR2100 students learn a variety of topics including freshwater resources, surface water, aquifers, groundwater hydrology, ecohydrology, coastal and ocean circulation, drinking water, water purification, wastewater treatment, irrigation, urban and agricultural runoff, sediment and contaminant transport, water cycle, water policy, water pollution, and water quality. Here we present a is a long-term study that takes place from 2017 to 2022 (before and after COVID-19) and involved 5,625 students over 8 semesters. Scaffolding was used to break up the poster project into smaller, more manageable assignments, which students completed throughout the semester. Instructions, examples, how-to videos, book chapters and rubrics were used to accommodate Students’ different levels of knowledge. Poster assignments were designed to teach students how to find and critically evaluate sources of information, recognize the changing nature of scientific knowledge, methods, models and tools, understand the application of scientific data and technological developments, and evaluate the social and ethical implications of natural science discoveries. At the end of the semester students participated in an asynchronous online poster symposium. Each student delivered a 5-min poster presentation using an online learning management system and completed peer reviews of their classmates’ posters using a rubric. This poster project met the learning objectives of our natural science, general education course and taught students important written, visual and verbal communication skills. Students were surveyed to determine, which parts of the course were most effective for instruction and learning. Students ranked poster assignments first, followed closely by lectures videos. Approximately 87% of students were confident that they could produce a scientific poster in the future and 80% of students recommended virtual poster symposiums for online courses. 
    more » « less
  3. his work-in-progress paper expands on a collaboration between engineering education researchers and machine learning researchers to automate the analysis of written responses to conceptually challenging questions in statics and dynamics courses (Authors, 2022). Using the Concept Warehouse (Koretsky et al., 2014), written justifications of ConcepTests (CTs) were gathered from statics and dynamics courses in a diverse set of two- and four-year institutions. Written justifications for CTs have been used to support active learning pedagogies which makes them important to investigate how students put together their problem-solving narratives of understanding. However, despite the large benefit that analysis of student written responses may provide to instructors and researchers, manual review of responses is cumbersome, limits analysis, and can be prone to human bias. In efforts to improve the analysis of student written responses, machine learning has been used in various educational contexts to analyze short and long texts (Burstein et al., 2020; Burstein et al., 2021). Natural Language Processing (NLP) uses transformer-based machine learning models (Brown et al., 2020; Raffel et al., 2019) which can be used through fine-tuning or in-context learning methods. NLP can be used to train algorithms that can automate the coding of written responses. Only a few studies for educational applications have leveraged transformer-based machine learning models further prompting an investigation into its use in STEM education. However, work in NLP has been criticized for heightening the possibility to perpetuate and even amplify harmful stereotypes and implicit biases (Chang et al., 2019; Mayfield et al., 2019). In this study, we detail the aim to use NLP for linguistic justice. Using methods like text summary, topic modeling, and text classification, we identify key aspects of student narratives of understanding in written responses to mechanics and statics CTs. Through this process, we seek to use machine learning to identify different ways students talk about a problem and their understanding at any point in their narrative formation process. Thus, we hope to help reduce human bias in the classroom and through technology by giving instructors and researchers a diverse set of narratives that include insight into their students’ histories, identities, and understanding. These can then be used towards connecting technological knowledge to students’ everyday lives. 
    more » « less
  4. Abstract Background

    Repeated calls to diversify the population of students earning undergraduate degrees in science, technology, engineering, and mathematics (STEM) fields have noted the greater diversity of community college students and their potential to thus have an impact on the racial/ethnic composition of 4-year degree earners. In this paper, we investigate barriers and supports to Black women’s success in STEM, using longitudinal interview data with seven Black women who were enrolled at community colleges and stated an interest in majoring in STEM at 4-year institutions.

    Results

    Our findings highlight a contrast between community colleges and universities. At community colleges, Black women were able to form supportive relationships with professors and peers, downplayed the potential of racism and sexism to derail their STEM ambitions, and saw little to no impact of bias on their educational experiences. Those students who transferred characterized university climates very differently, as they struggled to form supportive relationships and experienced racism and sexism from professors and peers.

    Conclusions

    We conclude using Patricia Hill Collins’ Domains of Power framework to categorize students’ experiences, then end with recommendations for change that will result in less alienating experiences for Black women, among other minoritized students.

     
    more » « less
  5. In this work-in-progress paper, we continue investigation into the propagation of the Concept Warehouse within mechanical engineering (Friedrichsen et al., 2017; Koretsky et al., 2019a). Even before the pandemic forced most instruction online, educational technology was a growing element in classroom culture (Koretsky & Magana, 2019b). However, adoption of technology tools for widespread use is often conceived from a turn-key lens, with professional development focused on procedural competencies and fidelity of implementation as the goal (Mills & Ragan, 2000; O’Donnell, 2008). Educators are given the tool with initial operating instructions, then left on their own to implement it in particular instructional contexts. There is little emphasis on the inevitable instructional decisions around incorporating the tool (Hodge, 2019) or on sustainable incorporation of technologies into existing instructional practice (Forkosh-Baruch et al., 2021). We consider the take-up of a technology tool as an emergent, rather than a prescribed process (Henderson et al., 2011). In this WIP paper, we examine how two instructors who we call Al and Joe reason through their adoption of a technology tool, focusing on interactions among instructors, tool, and students within and across contexts. The Concept Warehouse (CW) is a widely-available, web-based, open educational technology tool used to facilitate concept-based active learning in different contexts (Friedrichsen et al., 2017; Koretsky et al., 2014). Development of the CW is ongoing and collaboration-driven, where user-instructors from different institutions and disciplines can develop conceptual questions (called ConcepTests) and other learning and assessment tools that can be shared with other users. Currently there are around 3,500 ConcepTests, 1,500 faculty users, and 36,000 student users. About 700 ConcepTests have been developed for mechanics (statics and dynamics). The tool’s spectrum of affordances allows different entry points for instructor engagement, but also allows their use to grow and change as they become familiar with the tool and take up ideas from the contexts around them. Part of a larger study of propagation and use across five diverse institutions (Nolen & Koretsky, 2020), instructors were introduced to the tool, offered an introductory workshop and opportunity to participate in a community of practice (CoP), then interviewed early and later in their adoption. For this paper, we explore a bounded case study of the two instructors, Al and Joe, who took up the CW to teach Introductory Statics. Al and Joe were experienced instructors, committed to active learning, who presented examples from their ongoing adaptation of the tool for discussion in the community of practice. However, their decisions about how to integrate the tool fundamentally differed, including the aspects of the tool they took up and the ways they made sense of their use. In analyzing these two cases, we begin to uncover how these instructors navigated the dynamic nature of pedagogical decision making in and across contexts. 
    more » « less