Piyawattanametha, Wibool; Park, Yong-Hwa; Zappe, Hans
(Ed.)
Recently, two-photon polymerization has been successfully employed to fabricate high-contrast one-dimensional photonic crystals. Using this approach, photonic bandgap reflectivities over 90% have been demonstrated in the infrared spectral range. As a result of this success, modifications to the design are being explored which allow additional tunability of the photonic bandgap. In this paper, a one-dimensional photonic crystal fabricated by two-photon polymerization which has been modified to include mechanical flexures is evaluated. Experimental findings suggest these structures allow mechanically induced spectral shifting of the entire photonic bandgap. These results support the use of one-dimensional photonic crystals fabricated by two-photon polymerization for opto-mechanical applications.
more »
« less