skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photonic Crystals Fabricated by Two-Photon Polymerization with Mechanical Defects
One-dimensional photonic crystals have been used in sensing applications for decades, due to their ability to induce highly reflective photonic bandgaps. In this study, one-dimensional photonic crystals with alternating low- and high-density layers were fabricated from a single photosensitive polymer (IP-Dip) by two-photon polymerization. The photonic crystals were modified to include a central defect layer with different elastic properties compared to the surrounding layers, for the first time. It was observed that the defect mode resonance can be controlled by compressive force. Very good agreement was found between the experimentally measured spectra and the model data. The mechanical properties of the flexure design used in the defect layer were calculated. The calculated spring constant is of similar magnitude to those reported for microsprings fabricated on this scale using two-photon polymerization. The results of this study demonstrate the successful control of a defect resonance in one-dimensional photonic crystals fabricated by two-photon polymerization by mechanical stimuli, for the first time. Such a structure could have applications in fields, such as micro-robotics, and in micro-opto–electro–mechanical systems (MOEMSs), where optical sensing of mechanical fluctuations is desired.  more » « less
Award ID(s):
2052745 1828430
PAR ID:
10448454
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Optics
Volume:
4
Issue:
2
ISSN:
2673-3269
Page Range / eLocation ID:
300 to 309
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Piyawattanametha, Wibool; Park, Yong-Hwa; Zappe, Hans (Ed.)
    Recently, two-photon polymerization has been successfully employed to fabricate high-contrast one-dimensional photonic crystals. Using this approach, photonic bandgap reflectivities over 90% have been demonstrated in the infrared spectral range. As a result of this success, modifications to the design are being explored which allow additional tunability of the photonic bandgap. In this paper, a one-dimensional photonic crystal fabricated by two-photon polymerization which has been modified to include mechanical flexures is evaluated. Experimental findings suggest these structures allow mechanically induced spectral shifting of the entire photonic bandgap. These results support the use of one-dimensional photonic crystals fabricated by two-photon polymerization for opto-mechanical applications. 
    more » « less
  2. Over the last several years, two-photon polymerization has been a popular fabrication approach for photonic crystals due to its high spatial resolution. One-dimensional photonic crystals with photonic bandgap reflectivities over 90% have been demonstrated for the infrared spectral range. With the success of these structures, methods which can provide tunability of the photonic bandgap are being explored. In this study, we demonstrate the use of mechanical flexures in the design of one-dimensional photonic crystals fabricated by two-photon polymerization for the first time. Experimental results show that these photonic crystals provide active mechanically induced spectral control of the photonic bandgap. An analysis of the mechanical behavior of the photonic crystal is presented and elastic behavior is observed. These results suggest that one-dimensional photonic crystals with mechanical flexures can successfully function as opto-mechanical structures. 
    more » « less
  3. Abstract Chipscale micro- and nano-optomechanical systems, hinging on the intangible radiation-pressure force, have shown their unique strength in sensing, signal transduction, and exploration of quantum physics with mechanical resonators. Optomechanical crystals, as one of the leading device platforms, enable simultaneous molding of the band structure of optical photons and microwave phonons with strong optomechanical coupling. Here, we demonstrate a new breed of optomechanical crystals in two-dimensional slab-on-substrate structures empowered by mechanical bound states in the continuum (BICs) at 8 GHz. We show symmetry-induced BIC emergence with optomechanical couplings up tog/2π≈ 2.5 MHz per unit cell, on par with low-dimensional optomechanical crystals. Our work paves the way towards exploration of photon-phonon interaction beyond suspended microcavities, which might lead to new applications of optomechanics from phonon sensing to quantum transduction. 
    more » « less
  4. A polymer-based, one-dimensional photonic crystal exhibiting anisotropic responses was demonstrated in the terahertz frequency range. The photonic crystal was composed of alternating compact and low-density polymethacrylate layers. The low-density layers consisted of sub-wavelength sized columns, which were slanted 45° with respect to the substrate surface normal to achieve form-birefringence. Normal incidence polarized terahertz transmission measurements were carried out for characterization of the fabricated photonic crystals in the range from 82 to 125 GHz. The experimental data revealed a 2 GHz shift in the center frequency of the photonic bandgap as a function of in-plane orientation, well demonstrating the anisotropic behavior of the fabricated crystal. The transmission data were analyzed using stratified optical layer model calculations. A good agreement was found between the relevant model parameters and the corresponding design parameters. 
    more » « less
  5. Diffractive optics are structured optical surfaces that manipulate light based on the principles of interference and diffraction. By carefully designing the diffractive optical elements, the amplitude, phase, direction, and polarization of the transmitted and reflected light can be controlled. It is well-known that the propagation of light through diffractive optics is sensitive to changes in their structural parameters. In this study, a numerical analysis is conducted to evaluate the capabilities of slanted-wire diffraction gratings to function opto-mechanically in the infrared spectral range. The slanted wire array is designed such that it is compatible with fabrication by two-photon polymerization, a direct laser-writing approach. The modeled optical and mechanical capabilities of the diffraction grating are presented. The numerical results demonstrate a high sensitivity of the diffracted light to changes in the slant angle of the wires. The compressive force by which desired slant angles may be achieved as a function of the number of wires in the grating is investigated. The ability to fabricate the presented design using two-photon polymerization is supported by the development of a prototype. The results of this study suggest that slanted-wire gratings fabricated using two-photon polymerization may be effective in applications such as tunable beam splitting and micro-mechanical sensing. 
    more » « less