skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Single-Shot 3D Topography of Transmissive and Reflective Samples with a Dual-Mode Telecentric-Based Digital Holographic Microscope
Common path DHM systems are the most robust DHM systems as they are based on self-interference and are thus less prone to external fluctuations. A common issue amongst these DHM systems is that the two replicas of the sample’s information overlay due to self-interference, making them only suitable for imaging sparse samples. This overlay has restricted the use of common-path DHM systems in material science. The overlay can be overcome by limiting the sample’s field of view to occupy only half of the imaging field of view or by using an optical spatial filter. In this work, we have implemented optical spatial filtering in a common-path DHM system using a Fresnel biprism. We have analyzed the optimal pinhole size by evaluating the frequency content of the reconstructed phase images of a star target. We have also measured the accuracy of the system and the sensitivity to noise for different pinhole sizes. Finally, we have proposed the first dual-mode common-path DHM system using a Fresnel biprism. The performance of the dual-model DHM system has been evaluated experimentally using transmissive and reflective microscopic samples.  more » « less
Award ID(s):
2042563
PAR ID:
10394109
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Sensors
Volume:
22
Issue:
10
ISSN:
1424-8220
Page Range / eLocation ID:
3793
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Grulkowski, Ireneusz (Ed.)
    Quantitative phase imaging (QPI) via Digital Holographic microscopy (DHM) has been widely applied in material and biological applications. The performance of DHM technologies relies heavily on computational reconstruction methods to provide accurate phase measurements. Among the optical configuration of the imaging system in DHM, imaging systems operating in a non-telecentric regime are the most common ones. Nonetheless, the spherical wavefront introduced by the non-telecentric DHM system must be compensated to provide undistorted phase measurements. The proposed reconstruction approach is based on previous work from Kemper’s group. Here, we have reformulated the problem, reducing the number of required parameters needed for reconstructing phase images to the sensor pixel size and source wavelength. The developed computational algorithm can be divided into six main steps. In the first step, the selection of the +1-diffraction order in the hologram spectrum. The interference angle is obtained from the selected +1 order. Secondly, the curvature of the spherical wavefront distorting the sample’s phase map is estimated by analyzing the size of the selected +1 order in the hologram’s spectrum. The third and fourth steps are the spatial filtering of the +1 order and the compensation of the interference angle. The next step involves the estimation of the center of the spherical wavefront. An optional final optimization step has been included to fine-tune the estimated parameters and provide fully compensated phase images. Because the proper implementation of a framework is critical to achieve successful results, we have explicitly described the steps, including functions and toolboxes, required for reconstructing phase images without distortions. As a result, we have provided open-access codes and a user interface tool with minimum user input to reconstruct holograms recorded in a non-telecentric DHM system. 
    more » « less
  2. Differential phase sensitive methods, such as Nomarski microscopy, play an important role in quantitative phase imaging due to their compatibility with partially coherent illumination and excellent optical sectioning ability. In this Letter, we propose a new system, to the best of our knowledge, to retrieve differential phase information from transparent samples. It is based on a 4f optical system with an amplitude-type spatial light modulator (SLM), which removes the need for traditional differential interference contrast (DIC) optics and specialized phase-only SLMs. We demonstrate the principle of harmonically decoupled gradient light interference microscopy using standard samples, as well as static and dynamic biospecimens. 
    more » « less
  3. The conventional reconstruction method of off-axis digital holographic microscopy (DHM) relies on computational processing that involves spatial filtering of the sample spectrum and tilt compensation between the interfering waves to accurately reconstruct the phase of a biological sample. Additional computational procedures such as numerical focusing may be needed to reconstruct free-of-distortion quantitative phase images based on the optical configuration of the DHM system. Regardless of the implementation, any DHM computational processing leads to long processing times, hampering the use of DHM for video-rate renderings of dynamic biological processes. In this study, we report on a conditional generative adversarial network (cGAN) for robust and fast quantitative phase imaging in DHM. The reconstructed phase images provided by the GAN model present stable background levels, enhancing the visualization of the specimens for different experimental conditions in which the conventional approach often fails. The proposed learning-based method was trained and validated using human red blood cells recorded on an off-axis Mach–Zehnder DHM system. After proper training, the proposed GAN yields a computationally efficient method, reconstructing DHM images seven times faster than conventional computational approaches. 
    more » « less
  4. Abstract Imaging the activity of neurons that are widely distributed across brain regions deep in scattering tissue at high speed remains challenging. Here, we introduce an open-source system with Dual Independent Enhanced Scan Engines for Large field-of-view Two-Photon imaging (Diesel2p). Combining optical design, adaptive optics, and temporal multiplexing, the system offers subcellular resolution over a large field-of-view of ~25 mm 2 , encompassing distances up to 7 mm, with independent scan engines. We demonstrate the flexibility and various use cases of this system for calcium imaging of neurons in the living brain. 
    more » « less
  5. We proposed a Wollaston-prism-based snapshot phase-shifting diffraction phase microscope (WP-SPDPM) for low-coherence snapshot quantitative phase imaging and videography. Wollaston prism separates two orthogonally linearly polarized beams with high degrees of polarization at a sufficiently small separation angle; one of the beams passing through a pinhole serves as the reference beam. Four phase-shifted interferograms are simultaneously acquired with a polarization camera to accurately retrieve a high spatial resolution phase map. The system is nearly common-path in configuration and can achieve a large slope range and high accuracy. In addition to the ability to resist environmental noise, the WP-SPDPM is suitable for phase measurement using low-coherence light. The accuracy and large measurable slope range of the proposed system is validated and compared experimentally with a commercial profilometer. We believe WP-SPDPM is a powerful tool for the accurate and robust quantitative phase measurement and has a significant potential of the real-time phase imaging. 
    more » « less