skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories
Abstract. Even though the Arctic is remote, aerosol properties observed there arestrongly influenced by anthropogenic emissions from outside the Arctic. Thisis particularly true for the so-called Arctic haze season (January throughApril). In summer (June through September), when atmospheric transportpatterns change, and precipitation is more frequent, local Arctic sources,i.e., natural sources of aerosols and precursors, play an important role.Over the last few decades, significant reductions in anthropogenic emissionshave taken place. At the same time a large body of literature shows evidencethat the Arctic is undergoing fundamental environmental changes due toclimate forcing, leading to enhanced emissions by natural processes that mayimpact aerosol properties. In this study, we analyze 9 aerosol chemical species and 4 particleoptical properties from 10 Arctic observatories (Alert, Kevo, Pallas,Summit, Thule, Tiksi, Barrow/Utqiaġvik, Villum, and Gruvebadet and ZeppelinObservatory – both at Ny-Ålesund Research Station) to understand changesin anthropogenic and natural aerosol contributions. Variables includeequivalent black carbon, particulate sulfate, nitrate, ammonium,methanesulfonic acid, sodium, iron, calcium and potassium, as well asscattering and absorption coefficients, single scattering albedo andscattering Ångström exponent. First, annual cycles are investigated, which despite anthropogenic emissionreductions still show the Arctic haze phenomenon. Second, long-term trendsare studied using the Mann–Kendall Theil–Sen slope method. We find in total41 significant trends over full station records, i.e., spanning more than adecade, compared to 26 significant decadal trends. The majority ofsignificantly declining trends is from anthropogenic tracers and occurredduring the haze period, driven by emission changes between 1990 and 2000.For the summer period, no uniform picture of trends has emerged. Twenty-sixpercent of trends, i.e., 19 out of 73, are significant, and of those 5 arepositive and 14 are negative. Negative trends include not only anthropogenictracers such as equivalent black carbon at Kevo, but also natural indicatorssuch as methanesulfonic acid and non-sea-salt calcium at Alert. Positivetrends are observed for sulfate at Gruvebadet. No clear evidence of a significant change in the natural aerosolcontribution can be observed yet. However, testing the sensitivity of theMann–Kendall Theil–Sen method, we find that monotonic changes of around 5 % yr−1 in an aerosol property are needed to detect a significanttrend within one decade. This highlights that long-term efforts well beyonda decade are needed to capture smaller changes. It is particularly importantto understand the ongoing natural changes in the Arctic, where interannualvariability can be high, such as with forest fire emissions and theirinfluence on the aerosol population. To investigate the climate-change-induced influence on the aerosolpopulation and the resulting climate feedback, long-term observations oftracers more specific to natural sources are needed, as well as of particlemicrophysical properties such as size distributions, which can be used toidentify changes in particle populations which are not well captured bymass-oriented methods such as bulk chemical composition.  more » « less
Award ID(s):
2127733
PAR ID:
10394202
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
22
Issue:
5
ISSN:
1680-7324
Page Range / eLocation ID:
3067 to 3096
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Anthropogenic and natural emissions contribute to enhanced concentrations of aerosols in the Arctic winter and early spring, with most attention being paid to anthropogenic aerosols that contribute to so-called Arctic haze. Less-well-studied wintertime sea-spray aerosols (SSAs) under Arctic haze conditions are the focus of this study, since they can make an important contribution to wintertime Arctic aerosol abundances. Analysis of field campaign data shows evidence for enhanced local sources of SSAs, including marine organics at Utqiaġvik (formerly known as Barrow) in northern Alaska, United States, during winter 2014. Models tend to underestimate sub-micron SSAs and overestimate super-micron SSAs in the Arctic during winter, including the base version of the Weather Research Forecast coupled with Chemistry (WRF-Chem) model used here, which includes a widely used SSA source function based on Gong et al. (1997). Quasi-hemispheric simulations for winter 2014 including updated wind speed and sea-surface temperature (SST) SSA emission dependencies and sources of marine sea-salt organics and sea-salt sulfate lead to significantly improved model performance compared to observations at remote Arctic sites, notably for coarse-mode sodium and chloride, which are reduced. The improved model also simulates more realistic contributions of SSAs to inorganic aerosols at different sites, ranging from 20 %–93 % in the observations. Two-thirds of the improved model performance is from the inclusion of the dependence on SSTs. The simulation of nitrate aerosols is also improved due to less heterogeneous uptake of nitric acid on SSAs in the coarse mode and related increases in fine-mode nitrate. This highlights the importance of interactions between natural SSAs and inorganic anthropogenic aerosols that contribute to Arctic haze. Simulation of organic aerosols and the fraction of sea-salt sulfate are also improved compared to observations. However, the model underestimates episodes with elevated observed concentrations of SSA components and sub-micron non-sea-salt sulfate at some Arctic sites, notably at Utqiaġvik. Possible reasons are explored in higher-resolution runs over northern Alaska for periods corresponding to the Utqiaġvik field campaign in January and February 2014. The addition of a local source of sea-salt marine organics, based on the campaign data, increases modelled organic aerosols over northern Alaska. However, comparison with previous available data suggests that local natural sources from open leads, as well as local anthropogenic sources, are underestimated in the model. Missing local anthropogenic sources may also explain the low modelled (sub-micron) non-sea-salt sulfate at Utqiaġvik. The introduction of a higher wind speed dependence for sub-micron SSA emissions, also based on Arctic data, reduces biases in modelled sub-micron SSAs, while sea-ice fractions, including open leads, are shown to be an important factor controlling modelled super-micron, rather than sub-micron, SSAs over the north coast of Alaska. The regional results presented here show that modelled SSAs are more sensitive to wind speed dependence but that realistic modelling of sea-ice distributions is needed for the simulation of local SSAs, including marine organics. This study supports findings from the Utqiaġvik field campaign that open leads are the primary source of fresh and aged SSAs, including marine organic aerosols, during wintertime at Utqiaġvik; these findings do not suggest an influence from blowing snow and frost flowers. To improve model simulations of Arctic wintertime aerosols, new field data on processes that influence wintertime SSA production, in particular for fine-mode aerosols, are needed as is improved understanding about possible local anthropogenic sources. 
    more » « less
  2. Anthropogenic sulfate aerosols are estimated to have offset sixty percent of greenhouse-gas-induced warming in the Arctic, a region warming four times faster than the rest of the world. However, sulfate radiative forcing estimates remain uncertain because the relative contributions from anthropogenic versus natural sources to total sulfate aerosols are unknown. Here we measure sulfur isotopes of sulfate in a Summit, Greenland ice core from 1850 to 2006 CE to quantify the contribution of anthropogenic sulfur emissions to ice core sulfate. We use a Keeling Plot to determine the anthropogenic sulfur isotopic signature (δ34Santhro = +2.9  0.3 ‰), and compare this result to a compilation of sulfur isotope measurements of oil and coal. Using δ34Santhro, we quantify anthropogenic sulfate concentration separated from natural sulfate. Anthropogenic sulfate concentration increases to 68 ± 7% of non-sea-salt sulfate (65.1 ± 20.2 µg kg-1) during peak anthropogenic emissions from 1960 to 1990 and decreases to 45 ± 11% of non-sea-salt sulfate (25.4 ± 12.8 µg kg-1) from 1996 to 2006. These observations provide the first long-term record of anthropogenic sulfate distinguished from natural sources (e.g., volcanoes, dimethyl sulfide), and can be used to evaluate model characterization of anthropogenic sulfate aerosol fraction and radiative forcing over the industrial era. These data include sulfur isotopes of sulfate measurements from a Greenland ice core from 1850-2006. The preindustrial dataset (1200-1850) is uploaded to the Arctic data center here: doi:10.18739/A2N873162 
    more » « less
  3. Anthropogenic sulfate aerosols are estimated to have offset sixty percent of greenhouse-gas-induced warming in the Arctic, a region warming four times faster than the rest of the world. However, sulfate radiative forcing estimates remain uncertain because the relative contributions from anthropogenic versus natural sources to total sulfate aerosols are unknown. Here we measure sulfur isotopes of sulfate in a Summit, Greenland ice core from 1850 to 2006 CE to quantify the contribution of anthropogenic sulfur emissions to ice core sulfate. We use a Keeling Plot to determine the anthropogenic sulfur isotopic signature (δ34Santhro = +2.9 ± 0.3 ‰), and compare this result to a compilation of sulfur isotope measurements of oil and coal. Using δ34Santhro, we quantify anthropogenic sulfate concentration separated from natural sulfate. Anthropogenic sulfate concentration increases to 68 ± 7% of non-sea-salt sulfate (65.1 ± 20.2 µg kg-1) during peak anthropogenic emissions from 1960 to 1990 and decreases to 45 ± 11% of non-sea-salt sulfate (25.4 ± 12.8 µg kg-1) from 1996 to 2006. These observations provide the first long-term record of anthropogenic sulfate distinguished from natural sources (e.g., volcanoes, dimethyl sulfide), and can be used to evaluate model characterization of anthropogenic sulfate aerosol fraction and radiative forcing over the industrial era. 
    more » « less
  4. Abstract Long‐term declines in concentrations of fine particulate matter (PM2.5) in the United States (U.S.) have been disrupted in recent years, with recent trends stagnating or reversing. In this study, we analyze surface observations of PM2.5composition from 2002 to 2022 to identify the chemical components driving this shift. We find that PM2.5concentrations plateau across seasons and regions in the contiguous U.S. since 2016, even after excluding estimated wildfire impacts, suggesting that the rise in wildfire activity alone does not account for these trends. The stagnation is primarily driven by a slowdown in the reduction of sulfate and a non‐significant increase in organic aerosols. In the Eastern and Central U.S., sulfate concentrations generally mirror decreasing anthropogenic SO2emissions, except in winter, where chemical feedbacks related to oxidant limitations weaken the response of sulfate. We find that nitrate and NO2concentrations decrease slower than anthropogenic nitrogen oxides (NOx) emissions, particularly in fall and winter, suggesting a potential overestimate in the decrease of NOxemissions in the U.S. Environmental Protection Agency National Emission Inventory (NEI) and/or an increasing role of natural and non‐U.S. sources. In the Southeast, the decline in organic aerosol concentrations has stalled since 2015, possibly due to weaker decreases in sulfate‐induced secondary organic aerosol (SOA) formation from isoprene, combined with increases in monoterpene‐derived SOA as the climate warms. Despite continued decreases in the NEI black carbon (BC) emissions, BC concentrations have stagnated since 2015, even after removing the estimated influence of wildfire smoke, indicating a possible underestimate in emissions. 
    more » « less
  5. The Arctic is warming at almost four times the global rate. Cooling caused by anthropogenic aerosols has been estimated to offset sixty percent of greenhouse-gas-induced Arctic warming, but the contribution of aerosols to radiative forcing (RF) represents the largest uncertainty in estimating total RF, largely due to unknown preindustrial aerosol abundance. Here, sulfur isotope measurements in a Greenland ice core show that passive volcanic degassing contributes up to 66 ± 10% of preindustrial ice core sulfate in years without major eruptions. A state-of-the-art model indicates passive volcanic sulfur emissions influencing the Arctic are underestimated by up to a factor of three, possibly because many volcanic inventories do not include hydrogen sulfide emissions. Higher preindustrial volcanic sulfur emissions reduce modeled anthropogenic Arctic aerosol cooling by up to a factor of two (+0.11 to +0.29 W m-2 (watts per square meter)), suggesting that underestimating passive volcanic sulfur emissions has significant implications for anthropogenic-induced Arctic climate change. These data include sulfur isotopes of sulfate measurements from a Greenland ice core and volcanic gas measurements (CO2:S (carbon dioxide:sulfur) ratios) from various volcanoes and hot springs in Iceland. 
    more » « less