Abstract Organic mixed ionic and electronic conductors are of significant interest for bioelectronic applications. Here, three different isoindigoid building blocks are used to obtain polymeric mixed conductors with vastly different structural and electronic properties which can be further fine‐tuned through the choice of comonomer unit. This work shows how careful design of the isoindigoid scaffold can afford highly planar polymer structures with high degrees of electronic delocalization, while subtle structural modifications can control the dominant charge carrier (hole or electron) when probed in organic electrochemical transistors. A combination of experimental and computational techniques is employed to probe electrochemical, structural, and mixed ionic and electronic properties of the polymer series which in turn allows the derivation of important structure–property relations for this promising class of materials in the context of organic bioelectronics. Ultimately, these findings are used to outline robust molecular‐design strategies for isoindigo‐based mixed conductors that can support efficient p‐type, n‐type, and ambipolar transistor operation in an aqueous environment.
more »
« less
A Database for Crystalline Organic Conductors and Superconductors
We present a prototype database for quasi two-dimensional crystalline organic conductors and superconductors based on molecules related to bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF, ET). The database includes crystal structures, calculated electronic structures, and experimentally measured properties such as the superconducting transition temperature and critical magnetic fields. We obtained crystal structures from the Cambridge Structural Database and created a crystal structure analysis algorithm to identify cation molecules and execute tight binding electronic structure calculations. We used manual data entry to encode experimentally measured properties reported in publications. Crystalline organic conductors and superconductors exhibit a wide variety of electronic ground states, particularly those with correlations. We hope that this database will ultimately lead to a better understanding of the fundamental mechanisms of such states.
more »
« less
- Award ID(s):
- 1905950
- PAR ID:
- 10394203
- Date Published:
- Journal Name:
- Crystals
- Volume:
- 12
- Issue:
- 7
- ISSN:
- 2073-4352
- Page Range / eLocation ID:
- 919
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Databases of experimentally-derived metal–organic framework (MOF) crystal structures are useful for large-scale computational screening to identify which MOFs are best-suited for particular applications. However, these crystal structures must be cleaned to identify and/or correct various artifacts. The recently published 2019 CoRE MOF database (Chung et al. , J. Chem. Eng. Data , 2019, 64 , 5985–5998) reported thousands of experimentally-derived crystal structures that were partially cleaned to remove solvent molecules, to identify hundreds of disordered structures (approximately thirty of those were corrected), and to manually correct approximately 100 structures ( e.g. , adding missing hydrogen atoms). Herein, further cleaning of the 2019 CoRE MOF database is performed to identify structures with misbonded or isolated atoms: (i) structures containing an isolated atom, (ii) structures containing atoms too close together ( i.e. , overlapping atoms), (iii) structures containing a misplaced hydrogen atom, (iv) structures containing an under-bonded carbon atom (which might be caused by missing hydrogen atoms), and (v) structures containing an over-bonded carbon atom. This study should not be viewed as the final cleaning of this database, but rather as progress along the way towards the goal of someday achieving a completely cleaned set of experimentally-derived MOF crystal structures. We performed atom typing for all of the accepted structures to identify those structures that can be parameterized by previously reported forcefield precursors (Chen and Manz, RSC Adv ., 2019, 9 , 36492–36507). We report several forcefield precursors ( e.g. , net atomic charges, atom-in-material polarizabilities, atom-in-material dispersion coefficients, electron cloud parameters, etc. ) for more than five thousand MOFs in the 2019 CoRE MOF database.more » « less
-
null (Ed.)Angle-resolved photoemission spectroscopy (ARPES) is a vital technique, collecting data from both the energy and momentum of photoemitted electrons, and is indispensable for investigating the electronic band structure of solids. This article provides a review on ARPES studies of the electronic band structure of organic single crystals, including organic charge transfer conductors; organic semiconductors; and organo-metallic perovskites. In organic conductors and semiconductors, band dispersions are observed that are highly anisotropic. The Van der Waals crystal nature, the weak electron wavefunction overlap, as well as the strong electron-phonon coupling result in many organic crystals having indiscernible dispersion. In comparison, organo-metallic perovskite halides are characterized by strong s-p orbitals from the metal and halide at the top of the valence bands, with dispersions similar to those in inorganic materials.more » « less
-
Abstract Unconventional superconductors have Cooper pairs with lower symmetries than in conventional superconductors. In most unconventional superconductors, the additional symmetry breaking occurs in relation to typical ingredients such as strongly correlated Fermi liquid phases, magnetic fluctuations, or strong spin-orbit coupling in noncentrosymmetric structures. In this article, we show that the time-reversal symmetry breaking in the superconductor LaNiGa 2 is enabled by its previously unknown topological electronic band structure, with Dirac lines and a Dirac loop at the Fermi level. Two symmetry related Dirac points even remain degenerate under spin-orbit coupling. These unique topological features enable an unconventional superconducting gap in which time-reversal symmetry can be broken in the absence of other typical ingredients. Our findings provide a route to identify a new type of unconventional superconductors based on nonsymmorphic symmetries and will enable future discoveries of topological crystalline superconductors.more » « less
-
The ZrSiS family of compounds has garnered interest as Dirac nodal-line semimetals and offers an approach to study structural motifs coupled with electronic features, such as Dirac crossings. CeSbTe, of the ZrSiS/PbFCl structure type, is of interest due to its magnetically tunable topological states. The crystal structure consists of rare earth capped square nets separating the magnetic Ce–Te layers. In this work, we report the single crystal growth, magnetic properties, and electronic structures of LnSb1−xBixTe (Ln = La, Ce, Pr; x ∼ 0.2) and CeBiTe, adopting the CeSbTe crystal structure, and the implication of tuning the electronic properties by chemical substitution.more » « less
An official website of the United States government

