skip to main content


Title: Optimal Scheduling in the Multiserver-job Model under Heavy Traffic
Multiserver-job systems, where jobs require concurrent service at many servers, occur widely in practice. Essentially all of the theoretical work on multiserver-job systems focuses on maximizing utilization, with almost nothing known about mean response time. In simpler settings, such as various known-size single-server-job settings, minimizing mean response time is merely a matter of prioritizing small jobs. However, for the multiserver-job system, prioritizing small jobs is not enough, because we must also ensure servers are not unnecessarily left idle. Thus, minimizing mean response time requires prioritizing small jobs while simultaneously maximizing throughput. Our question is how to achieve these joint objectives. We devise the ServerFilling-SRPT scheduling policy, which is the first policy to minimize mean response time in the multiserver-job model in the heavy traffic limit. In addition to proving this heavy-traffic result, we present empirical evidence that ServerFilling-SRPT outperforms all existing scheduling policies for all loads, with improvements by orders of magnitude at higher loads. Because ServerFilling-SRPT requires knowing job sizes, we also define the ServerFilling-Gittins policy, which is optimal when sizes are unknown or partially known.  more » « less
Award ID(s):
1938909 1763701
PAR ID:
10394265
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Measurement and Analysis of Computing Systems
Volume:
6
Issue:
3
ISSN:
2476-1249
Page Range / eLocation ID:
1 to 32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The shortest-remaining-processing-time (SRPT) scheduling policy has been extensively studied, for more than 50 years, in single-server queues with infinitely patient jobs. Yet, much less is known about its performance in multiserver queues. In this paper, we present the first theoretical analysis of SRPT in multiserver queues with abandonment. In particular, we consider the M/GI/s+GI queue and demonstrate that, in the many-sever overloaded regime, performance in the SRPT queue is equivalent, asymptotically in steady state, to a preemptive two-class priority queue where customers with short service times (below a threshold) are served without wait, and customers with long service times (above a threshold) eventually abandon without service. We prove that the SRPT discipline maximizes, asymptotically, the system throughput, among all scheduling disciplines. We also compare the performance of the SRPT policy to blind policies and study the effects of the patience-time and service-time distributions. This paper was accepted by Baris Ata, stochastic models & simulation. 
    more » « less
  2. null (Ed.)
    The Gittins scheduling policy minimizes the mean response in the single-server M/G/1 queue in a wide variety of settings. Most famously, Gittins is optimal when preemption is allowed and service requirements are unknown but drawn from a known distribution. Gittins is also optimal much more generally, adapting to any amount of available information and any preemption restrictions. However, scheduling to minimize mean response time in a multiserver setting, specifically the central-queue M/G/k, is a much more difficult problem. In this work we give the first general analysis of Gittins in the M/G/k. Specifically, we show that under extremely general conditions, Gittins's mean response time in the M/G/k is at most its mean response time in the M/G/1 plus an $O(łog(1/(1 - ρ)))$ additive term, where ρ is the system load. A consequence of this result is that Gittins is heavy-traffic optimal in the M/G/k if the service requirement distribution S satisfies $\mathbfE [S^2(łog S)^+] < \infty$. This is the most general result on minimizing mean response time in the M/G/k to date. To prove our results, we combine properties of the Gittins policy and Palm calculus in a novel way. Notably, our technique overcomes the limitations of tagged job methods that were used in prior scheduling analyses. 
    more » « less
  3. Dispatching systems, where arriving jobs are immediately assigned to one of multiple queues, are ubiquitous in computer systems and service systems. A natural and practically relevant model is one in which each queue serves jobs in FCFS (First-Come First-Served) order. We consider the case where the dispatcher is size-aware, meaning it learns the size (i.e. service time) of each job as it arrives; and state-aware, meaning it always knows the amount of work (i.e. total remaining service time) at each queue. While size- and state-aware dispatching to FCFS queues has been extensively studied, little is known about optimal dispatching for the objective of minimizing mean delay. A major obstacle is that no nontrivial lower bound on mean delay is known, even in heavy traffic (i.e. the limit as load approaches capacity). This makes it difficult to prove that any given policy is optimal, or even heavy-traffic optimal. In this work, we propose the first size- and state-aware dispatching policy that provably minimizes mean delay in heavy traffic. Our policy, called CARD (Controlled Asymmetry Reduces Delay), keeps all but one of the queues short, then routes as few jobs as possible to the one long queue. We prove an upper bound on CARD's mean delay, and we prove the first nontrivial lower bound on the mean delay of any size- and state-aware dispatching policy. Both results apply to any number of servers. Our bounds match in heavy traffic, implying CARD's heavy-traffic optimality. In particular, CARD's heavy-traffic performance improves upon that of LWL (Least Work Left), SITA (Size Interval Task Assignment), and other policies from the literature whose heavy-traffic performance is known. 
    more » « less
  4. We consider scheduling in the M/G/1 queue with unknown job sizes. It is known that the Gittins policy minimizes mean response time in this setting. However, the behavior of the tail of response time under Gittins is poorly understood, even in the large-response-time limit. Characterizing Gittins’s asymptotic tail behavior is important because if Gittins has optimal tail asymptotics, then it simultaneously provides optimal mean response time and good tail performance. In this work, we give the first comprehensive account of Gittins’s asymptotic tail behavior. For heavy-tailed job sizes, we find that Gittins always has asymptotically optimal tail. The story for light-tailed job sizes is less clear-cut: Gittins’s tail can be optimal, pessimal, or in between. To remedy this, we show that a modification of Gittins avoids pessimal tail behavior, while achieving near-optimal mean response time. 
    more » « less
  5. We study the problem of scheduling jobs in a queueing system, specifically an M/G/1 with light-tailed job sizes, to asymptotically optimize the response time tail. This means scheduling to make P[T > t], the chance a job's response time exceeds t, decay as quickly as possible in the t \to \infty limit. For some time, the best known policy was First-Come First-Served (FCFS), which has an asymptotically exponential tail: P[T > t] ~ C e^-γ t . FCFS achieves the optimal decay rate γ, but its tail constant C is suboptimal. Only recently have policies that improve upon FCFS's tail constant been discovered. But it is unknown what the optimal tail constant is, let alone what policy might achieve it. In this paper, we derive a closed-form expression for the optimal tail constant C, and we introduce γ-Boost, a new policy that achieves this optimal tail constant. Roughly speaking, γ-Boost operates similarly to FCFS, but it pretends that small jobs arrive earlier than their true arrival times. This significantly reduces the response time of small jobs without unduly delaying large jobs, improving upon FCFS's tail constant by up to 50% with only moderate job size variability, with even larger improvements for higher variability. While these results are for systems with full job size information, we also introduce and analyze a version of γ-Boost that works in settings with partial job size information, showing it too achieves significant gains over FCFS. Finally, we show via simulation that γ-Boost has excellent practical performance. 
    more » « less