skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: NeuralCubes: Deep Representations for Visual Data Exploration
Visual exploration of large multi-dimensional datasets has seen tremendous progress in recent years, allowing users to express rich data queries that produce informative visual summaries, all in real time. Techniques based on data cubes are some of the most promising approaches. However, these techniques usually require a large memory footprint for large datasets. To tackle this problem, we present NeuralCubes: neural networks that predict results for aggregate queries, similar to data cubes. NeuralCubes learns a function that takes as input a given query, for instance, a geographic region and temporal interval, and outputs the result of the query. The learned function serves as a real-time, low-memory approximator for aggregation queries. Our models are small enough to be sent to the client side (e.g. the web browser for a web-based application) for evaluation, enabling data exploration of large datasets without database/network connection. We demonstrate the effectiveness of NeuralCubes through extensive experiments on a variety of datasets and discuss how NeuralCubes opens up opportunities for new types of visualization and interaction.  more » « less
Award ID(s):
1940175
PAR ID:
10394317
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
2021 IEEE International Conference on Big Data (Big Data)
Page Range / eLocation ID:
550 to 561
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Localizing video moments based on the movement patterns of objects is an important task in video analytics. Existing video analytics systems offer two types of querying interfaces based on natural language and SQL, respectively. However, both types of interfaces have major limitations. SQL-based systems require high query specification time, whereas natural language-based systems require large training datasets to achieve satisfactory retrieval accuracy. To address these limitations, we present SketchQL, a video database management system (VDBMS) for offline, exploratory video moment retrieval that is both easy to use and generalizes well across multiple video moment datasets. To improve ease-of-use, SketchQL features avisual query interfacethat enables users to sketch complex visual queries through intuitive drag-and-drop actions. To improve generalizability, SketchQL operates on object-tracking primitives that are reliably extracted across various datasets using pre-trained models. We present a learned similarity search algorithm for retrieving video moments closely matching the user's visual query based on object trajectories. SketchQL trains the model on a diverse dataset generated with a novel simulator, that enhances its accuracy across a wide array of datasets and queries. We evaluate SketchQL on four real-world datasets with nine queries, demonstrating its superior usability and retrieval accuracy over state-of-the-art VDBMSs. 
    more » « less
  2. The unprecedented rise of social media platforms, combined with location-aware technologies, has led to continuously producing a significant amount of geo-social data that flows as a user-generated data stream. This data has been exploited in several important use cases in various application domains. This article supports geo-social personalized queries in streaming data environments. We define temporal geo-social queries that provide users with real-time personalized answers based on their social graph. The new queries allow incorporating keyword search to get personalized results that are relevant to certain topics. To efficiently support these queries, we propose an indexing framework that provides lightweight and effective real-time indexing to digest geo-social data in real time. The framework distinguishes highly dynamic data from relatively stable data and uses appropriate data structures and a storage tier for each. Based on this framework, we propose a novel geo-social index and adopt two baseline indexes to support the addressed queries. The query processor then employs different types of pruning to efficiently access the index content and provide a real-time query response. The extensive experimental evaluation based on real datasets has shown the superiority of our proposed techniques to index real-time data and provide low-latency queries compared to existing competitors. 
    more » « less
  3. Advances in technology coupled with the availability of low-cost sensors have resulted in the continuous generation of large time series from several sources. In order to visually explore and compare these time series at different scales, analysts need to execute online analytical processing (OLAP) queries that include constraints and group-by's at multiple temporal hierarchies. Effective visual analysis requires these queries to be interactive. However, while existing OLAP cube-based structures can support interactive query rates, the exponential memory requirement to materialize the data cube is often unsuitable for large data sets. Moreover, none of the recent space-efficient cube data structures allow for updates. Thus, the cube must be re-computed whenever there is new data, making them impractical in a streaming scenario. We propose Time Lattice, a memory-efficient data structure that makes use of the implicit temporal hierarchy to enable interactive OLAP queries over large time series. Time Lattice is a subset of a fully materialized cube and is designed to handle fast updates and streaming data. We perform an experimental evaluation which shows that the space efficiency of the data structure does not hamper its performance when compared to the state of the art. In collaboration with signal processing and acoustics research scientists, we use the Time Lattice data structure to design the Noise Profiler, a web-based visualization framework that supports the analysis of noise from cities. We demonstrate the utility of Noise Profiler through a set of case studies. 
    more » « less
  4. Recent advancements in deep learning techniques facilitate intelligent-query support in diverse applications, such as content-based image retrieval and audio texturing. Unlike conventional key-based queries, these intelligent queries lack efficient indexing and require complex compute operations for feature matching. To achieve high-performance intelligent querying against massive datasets, modern computing systems employ GPUs in-conjunction with solid-state drives (SSDs) for fast data access and parallel data processing. However, our characterization with various intelligent-query workloads developed with deep neural networks (DNNs), shows that the storage I/O bandwidth is still the major bottleneck that contributes 56%--90% of the query execution time. To this end, we present DeepStore, an in-storage accelerator architecture for intelligent queries. It consists of (1) energy-efficient in-storage accelerators designed specifically for supporting DNN-based intelligent queries, under the resource constraints in modern SSD controllers; (2) a similarity-based in-storage query cache to exploit the temporal locality of user queries for further performance improvement; and (3) a lightweight in-storage runtime system working as the query engine, which provides a simple software abstraction to support different types of intelligent queries. DeepStore exploits SSD parallelisms with design space exploration for achieving the maximal energy efficiency for in-storage accelerators. We validate DeepStore design with an SSD simulator, and evaluate it with a variety of vision, text, and audio based intelligent queries. Compared with the state-of-the-art GPU+SSD approach, DeepStore improves the query performance by up to 17.7×, and energy-efficiency by up to 78.6×. 
    more » « less
  5. null (Ed.)
    Query-based explanations for missing answers identify which operators of a query are responsible for the failure to return a missing answer of interest. This type of explanations has proven useful, e.g., to debug complex analytical queries. Such queries are frequent in big data systems such as Apache Spark. We present a novel approach to produce query-based explanations. It is the first to support nested data and to consider operators that modify the schema and structure of the data (e.g., nesting, projections) as potential causes of missing answers. To efficiently compute explanations, we propose a heuristic algorithm that applies two novel techniques: (i) reasoning about multiple schema alternatives for a query and (ii) re-validating at each step whether an intermediate result can contribute to the missing answer. Using an implementation on Spark, we demonstrate that our approach is the first to scale to large datasets while often finding explanations that existing techniques fail to identify. 
    more » « less