skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SAGE: A Split-Architecture Methodology for Efficient End-to-End Autonomous Vehicle Control
Autonomous vehicles (AV) are expected to revolutionize transportation and improve road safety significantly. However, these benefits do not come without cost; AVs require large Deep-Learning (DL) models and powerful hardware platforms to operate reliably in real-time, requiring between several hundred watts to one kilowatt of power. This power consumption can dramatically reduce vehicles’ driving range and affect emissions. To address this problem, we propose SAGE: a methodology for selectively offloading the key energy-consuming modules of DL architectures to the cloud to optimize edge, energy usage while meeting real-time latency constraints. Furthermore, we leverage Head Network Distillation (HND) to introduce efficient bottlenecks within the DL architecture in order to minimize the network overhead costs of offloading with almost no degradation in the model’s performance. We evaluate SAGE using an Nvidia Jetson TX2 and an industry-standard Nvidia Drive PX2 as the AV edge, devices and demonstrate that our offloading strategy is practical for a wide range of DL models and internet connection bandwidths on 3G, 4G LTE, and WiFi technologies. Compared to edge-only computation, SAGE reduces energy consumption by an average of 36.13% , 47.07% , and 55.66% for an AV with one low-resolution camera, one high-resolution camera, and three high-resolution cameras, respectively. SAGE also reduces upload data size by up to 98.40% compared to direct camera offloading.  more » « less
Award ID(s):
1739503
PAR ID:
10394359
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Embedded Computing Systems
Volume:
20
Issue:
5s
ISSN:
1539-9087
Page Range / eLocation ID:
1 to 22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The low-latency requirements of connected electric vehicles and their increasing computing needs have led to the necessity to move computational nodes from the cloud data centers to edge nodes such as road-side units (RSU). However, offloading the workload of all the vehicles to RSUs may not scale well to an increasing number of vehicles and workloads. To solve this problem, computing nodes can be installed directly on the smart vehicles, so that each vehicle can execute the heavy workload locally, thus forming a vehicular edge computing system. On the other hand, these computational nodes may drain a considerable amount of energy in electric vehicles. It is therefore important to manage the resources of connected electric vehicles to minimize their energy consumption. In this paper, we propose an algorithm that manages the computing nodes of connected electric vehicles for minimized energy consumption. The algorithm achieves energy savings for connected electric vehicles by exploiting the discrete settings of computational power for various performance levels. We evaluate the proposed algorithm and show that it considerably reduces the vehicles' computational energy consumption compared to state-of-the-art baselines. Specifically, our algorithm achieves 15-85% energy savings compared to a baseline that executes workload locally and an average of 51% energy savings compared to a baseline that offloads vehicles' workloads only to RSUs. 
    more » « less
  2. The convergence of edge computing and artificial intelligence requires that inference is performed on-device to provide rapid response with low latency and high accuracy without transferring large amounts of data to the cloud. However, power and size limitations make it challenging for electrical accelerators to support both inference and training for large neural network models. To this end, we propose Trident, a low-power photonic accelerator that combines the benefits of phase change material (PCM) and photonics to implement both inference and training in one unified architecture. Emerging silicon photonics has the potential to exploit the parallelism of neural network models, reduce power consumption and provide high bandwidth density via wavelength division multiplexing, making photonics an ideal candidate for on-device training and inference. As PCM is reconfigurable and non-volatile, we utilize it for two distinct purposes: (i) to maintain resonant wavelength without expensive electrical or thermal heaters, and (ii) to implement non-linear activation function, which eliminates the need to move data between memory and compute units. This multi-purpose use of PCM is shown to lead to significant reduction in energy consumption and execution time. Compared to photonic accelerators DEAP-CNN, CrossLight, and PIXEL, Trident improves energy efficiency by up to 43% and latency by up to 150% on average. Compared to electronic edge AI accelerators Google Coral which utilizes the Google Edge TPU and Bearkey TB96-AI, Trident improves energy efficiency by 11% and 93% respectively. While NVIDIA AGX Xavier is more energy efficient, the reduced data movement and GST activation of Trident reduce latency by 107% on average compared to the NVIDIA accelerator. When compared to the Google Coral and the Bearkey TB96-AI, Trident reduces latency by 1413% and 595% on average. 
    more » « less
  3. In autonomous vehicles (AVs), early warning systems rely on collision prediction to ensure occupant safety. However, state-of-the-art methods using deep convolutional networks either fail at modeling collisions or are too expensive/slow, making them less suitable for deployment on AV edge hardware. To address these limitations, we propose SG2VEC, a spatio-temporal scene-graph embedding methodology that uses Graph Neural Network (GNN) and Long Short-Term Memory (LSTM) layers to predict future collisions via visual scene perception. We demonstrate that SG2VEC predicts collisions 8.11% more accurately and 39.07% earlier than the state-of-the-art method on synthesized datasets, and 29.47% more accurately on a challenging realworld collision dataset. We also show that SG2VEC is better than the state-of-the-art at transferring knowledge from synthetic datasets to real-world driving datasets. Finally, we demonstrate that SG2VEC performs inference 9.3x faster with an 88.0% smaller model, 32.4% less power, and 92.8% less energy than the state-of-the-art method on the industry-standard Nvidia DRIVE PX 2 platform, making it more suitable for implementation on the edge. 
    more » « less
  4. In the era of pervasive digital connectivity, intelligent surveillance systems (ISS) have become essential tools for ensuring public safety, protecting critical infrastructure, and deterring security threats in various environments. The current state of these systems heavily relies on the computational capabilities of mobile devices for tasks such as real-time video analysis, object detection, and tracking. However, the limited processing power and energy constraints of these devices hinder their ability to perform these tasks efficiently and effectively. The dynamic nature of the surveillance environment also adds complexity to the task-offloading process. To address this issue, mobile edge computing (MEC) comes into play by offering edge servers with higher computational capabilities and proximity to mobile devices. It enables ISS by offloading computationally intensive tasks from resource-constrained mobile devices to nearby MEC servers. Therefore, in this paper, we propose and implement an energy-efficient and cost-effective task-offloading framework in the MEC environment. The amalgamation of binary and partial task-offloading strategies is used to achieve a cost-effective and energy-efficient system. We also compare the proposed framework in MEC with mobile cloud computing (MCC) environments. The proposed framework addresses the challenge of achieving energy-efficient and cost-effective solutions in the context of MEC for ISS. The iFogSim simulator is used for implementation and simulation purposes. The simulation results show that the proposed framework reduces latency, cost, execution time, network usage, and energy consumption. 
    more » « less
  5. Edge-assisted AR supports high-quality AR on resource-constrained mobile devices by offloading high-rate camera-captured frames to powerful GPU edge servers to perform heavy vision tasks. Since the result of an offloaded frame may not come back in the same frame interval, edge-assisted AR designs resort to local tracking on the last server returned result to generate more accurate result for the current frame. In such an offloading+local tracking paradigm, reducing the staleness of the last server returned result is critical to improving AR task accuracy. In this paper, we present MPCP, an online offloading scheduling framework that minimizes the staleness of server-returned result in edge-assisted AR by optimally pipelining network transfer of frames to the edge server and the Deep Neural Network inference on the edge server. MPCP is based on model predictive control (MPC). Our evaluation results show that MPCP reduces the depth estimation error by up to 10.0% compared to several baseline schemes. 
    more » « less