skip to main content


Title: SAGE: A Split-Architecture Methodology for Efficient End-to-End Autonomous Vehicle Control
Autonomous vehicles (AV) are expected to revolutionize transportation and improve road safety significantly. However, these benefits do not come without cost; AVs require large Deep-Learning (DL) models and powerful hardware platforms to operate reliably in real-time, requiring between several hundred watts to one kilowatt of power. This power consumption can dramatically reduce vehicles’ driving range and affect emissions. To address this problem, we propose SAGE: a methodology for selectively offloading the key energy-consuming modules of DL architectures to the cloud to optimize edge, energy usage while meeting real-time latency constraints. Furthermore, we leverage Head Network Distillation (HND) to introduce efficient bottlenecks within the DL architecture in order to minimize the network overhead costs of offloading with almost no degradation in the model’s performance. We evaluate SAGE using an Nvidia Jetson TX2 and an industry-standard Nvidia Drive PX2 as the AV edge, devices and demonstrate that our offloading strategy is practical for a wide range of DL models and internet connection bandwidths on 3G, 4G LTE, and WiFi technologies. Compared to edge-only computation, SAGE reduces energy consumption by an average of 36.13% , 47.07% , and 55.66% for an AV with one low-resolution camera, one high-resolution camera, and three high-resolution cameras, respectively. SAGE also reduces upload data size by up to 98.40% compared to direct camera offloading.  more » « less
Award ID(s):
1739503
NSF-PAR ID:
10394359
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Embedded Computing Systems
Volume:
20
Issue:
5s
ISSN:
1539-9087
Page Range / eLocation ID:
1 to 22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mobile devices such as drones and autonomous vehicles increasingly rely on object detection (OD) through deep neural networks (DNNs) to perform critical tasks such as navigation, target-tracking and surveillance, just to name a few. Due to their high complexity, the execution of these DNNs requires excessive time and energy. Low-complexity object tracking (OT) is thus used along with OD, where the latter is periodically applied to generate "fresh" references for tracking. However, the frames processed with OD incur large delays, which does not comply with real-time applications requirements. Offloading OD to edge servers can mitigate this issue, but existing work focuses on the optimization of the offloading process in systems where the wireless channel has a very large capacity. Herein, we consider systems with constrained and erratic channel capacity, and establish parallel OT (at the mobile device) and OD (at the edge server) processes that are resilient to large OD latency. We propose Katch-Up, a novel tracking mechanism that improves the system resilience to excessive OD delay. We show that this technique greatly improves the quality of the reference available to tracking, and boosts performance up to 33%. However, while Katch-Up significantly improves performance, it also increases the computing load of the mobile device. Hence, we design SmartDet, a low-complexity controller based on deep reinforcement learning (DRL) that learns to achieve the right trade-off between resource utilization and OD performance. SmartDet takes as input highly-heterogeneous context-related information related to the current video content and the current network conditions to optimize frequency and type of OD offloading, as well as Katch-Up utilization. We extensively evaluate SmartDet on a real-world testbed composed by a JetSon Nano as mobile device and a GTX 980 Ti as edge server, connected through a Wi-Fi link, to collect several network-related traces, as well as energy measurements. We consider a state-of-the-art video dataset (ILSVRC 2015 - VID) and state-of-the-art OD models (EfficientDet 0, 2 and 4). Experimental results show that SmartDet achieves an optimal balance between tracking performance – mean Average Recall (mAR) and resource usage. With respect to a baseline with full Katch-Up usage and maximum channel usage, we still increase mAR by 4% while using 50% less of the channel and 30% power resources associated with Katch-Up. With respect to a fixed strategy using minimal resources, we increase mAR by 20% while using Katch-Up on 1/3 of the frames. 
    more » « less
  2. The low-latency requirements of connected electric vehicles and their increasing computing needs have led to the necessity to move computational nodes from the cloud data centers to edge nodes such as road-side units (RSU). However, offloading the workload of all the vehicles to RSUs may not scale well to an increasing number of vehicles and workloads. To solve this problem, computing nodes can be installed directly on the smart vehicles, so that each vehicle can execute the heavy workload locally, thus forming a vehicular edge computing system. On the other hand, these computational nodes may drain a considerable amount of energy in electric vehicles. It is therefore important to manage the resources of connected electric vehicles to minimize their energy consumption. In this paper, we propose an algorithm that manages the computing nodes of connected electric vehicles for minimized energy consumption. The algorithm achieves energy savings for connected electric vehicles by exploiting the discrete settings of computational power for various performance levels. We evaluate the proposed algorithm and show that it considerably reduces the vehicles' computational energy consumption compared to state-of-the-art baselines. Specifically, our algorithm achieves 15-85% energy savings compared to a baseline that executes workload locally and an average of 51% energy savings compared to a baseline that offloads vehicles' workloads only to RSUs. 
    more » « less
  3. In autonomous vehicles (AVs), early warning systems rely on collision prediction to ensure occupant safety. However, state-of-the-art methods using deep convolutional networks either fail at modeling collisions or are too expensive/slow, making them less suitable for deployment on AV edge hardware. To address these limitations, we propose SG2VEC, a spatio-temporal scene-graph embedding methodology that uses Graph Neural Network (GNN) and Long Short-Term Memory (LSTM) layers to predict future collisions via visual scene perception. We demonstrate that SG2VEC predicts collisions 8.11% more accurately and 39.07% earlier than the state-of-the-art method on synthesized datasets, and 29.47% more accurately on a challenging realworld collision dataset. We also show that SG2VEC is better than the state-of-the-art at transferring knowledge from synthetic datasets to real-world driving datasets. Finally, we demonstrate that SG2VEC performs inference 9.3x faster with an 88.0% smaller model, 32.4% less power, and 92.8% less energy than the state-of-the-art method on the industry-standard Nvidia DRIVE PX 2 platform, making it more suitable for implementation on the edge. 
    more » « less
  4. Recently, with the advent of the Internet of everything and 5G network, the amount of data generated by various edge scenarios such as autonomous vehicles, smart industry, 4K/8K, virtual reality (VR), augmented reality (AR), etc., has greatly exploded. All these trends significantly brought real-time, hardware dependence, low power consumption, and security requirements to the facilities, and rapidly popularized edge computing. Meanwhile, artificial intelligence (AI) workloads also changed the computing paradigm from cloud services to mobile applications dramatically. Different from wide deployment and sufficient study of AI in the cloud or mobile platforms, AI workload performance and their resource impact on edges have not been well understood yet. There lacks an in-depth analysis and comparison of their advantages, limitations, performance, and resource consumptions in an edge environment. In this paper, we perform a comprehensive study of representative AI workloads on edge platforms. We first conduct a summary of modern edge hardware and popular AI workloads. Then we quantitatively evaluate three categories (i.e., classification, image-to-image, and segmentation) of the most popular and widely used AI applications in realistic edge environments based on Raspberry Pi, Nvidia TX2, etc. We find that interaction between hardware and neural network models incurs non-negligible impact and overhead on AI workloads at edges. Our experiments show that performance variation and difference in resource footprint limit availability of certain types of workloads and their algorithms for edge platforms, and users need to select appropriate workload, model, and algorithm based on requirements and characteristics of edge environments. 
    more » « less
  5. With the advent of 5G, supporting high-quality game streaming applications on edge devices has become a reality. This is evidenced by a recent surge in cloud gaming applications on mobile devices. In contrast to video streaming applications, interactive games require much more compute power for supporting improved rendering (such as 4K streaming) with the stipulated frames-per second (FPS) constraints. This in turn consumes more battery power in a power-constrained mobile device. Thus, the state-of-the-art gaming applications suffer from lower video quality (QoS) and/or energy efficiency. While there has been a plethora of recent works on optimizing game streaming applications, to our knowledge, there is no study that systematically investigates the design pairs on the end-to-end game streaming pipeline across the cloud, network, and edge devices to understand the individual contributions of the different stages of the pipeline for improving the overall QoS and energy efficiency. In this context, this paper presents a comprehensive performance and power analysis of the entire game streaming pipeline consisting of the server/cloud side, network, and edge. Through extensive measurements with a high-end workstation mimicking the cloud end, an open-source platform (Moonlight-GameStreaming) emulating the edge device/mobile platform, and two network settings (WiFi and 5G) we conduct a detailed measurement-based study with seven representative games with different characteristics. We characterize the performance in terms of frame latency, QoS, bitrate, and energy consumption for different stages of the gaming pipeline. Our study shows that the rendering stage and the encoding stage at the cloud end are the bottlenecks to support 4K streaming. While 5G is certainly more suitable for supporting enhanced video quality with 4K streaming, it is more expensive in terms of power consumption compared to WiFi. Further, fluctuations in 5G network quality can lead to huge frame drops thus affecting QoS, which needs to be addressed by a coordinated design between the edge device and the server. Finally, the network interface and the decoder units in a mobile platform need more energy-efficient design to support high quality games at a lower cost. These observations should help in designing more cost-effective future cloud gaming platforms. 
    more » « less