skip to main content


Title: Energy-Aware Resource Management in Vehicular Edge Computing Systems
The low-latency requirements of connected electric vehicles and their increasing computing needs have led to the necessity to move computational nodes from the cloud data centers to edge nodes such as road-side units (RSU). However, offloading the workload of all the vehicles to RSUs may not scale well to an increasing number of vehicles and workloads. To solve this problem, computing nodes can be installed directly on the smart vehicles, so that each vehicle can execute the heavy workload locally, thus forming a vehicular edge computing system. On the other hand, these computational nodes may drain a considerable amount of energy in electric vehicles. It is therefore important to manage the resources of connected electric vehicles to minimize their energy consumption. In this paper, we propose an algorithm that manages the computing nodes of connected electric vehicles for minimized energy consumption. The algorithm achieves energy savings for connected electric vehicles by exploiting the discrete settings of computational power for various performance levels. We evaluate the proposed algorithm and show that it considerably reduces the vehicles' computational energy consumption compared to state-of-the-art baselines. Specifically, our algorithm achieves 15-85% energy savings compared to a baseline that executes workload locally and an average of 51% energy savings compared to a baseline that offloads vehicles' workloads only to RSUs.  more » « less
Award ID(s):
1724227
NSF-PAR ID:
10183074
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proc. of the IEEE International Conference on Cloud Engineering (IC2E 2020)
Page Range / eLocation ID:
49 to 58
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In Vehicular Edge Computing (VEC) systems, the computing resources of connected Electric Vehicles (EV) are used to fulfill the low-latency computation requirements of vehicles. However, local execution of heavy workloads may drain a considerable amount of energy in EVs. One promising way to improve the energy efficiency is to share and coordinate computing resources among connected EVs. However, the uncertainties in the future location of vehicles make it hard to decide which vehicles participate in resource sharing and how long they share their resources so that all participants benefit from resource sharing. In this paper, we propose VECMAN, a framework for energy-aware resource management in VEC systems composed of two algorithms: (i) a resource selector algorithm that determines the participating vehicles and the duration of resource sharing period; and (ii) an energy manager algorithm that manages computing resources of the participating vehicles with the aim of minimizing the computational energy consumption. We evaluate the proposed algorithms and show that they considerably reduce the vehicles computational energy consumption compared to the state-of-the-art baselines. Specifically, our algorithms achieve between 7% and 18% energy savings compared to a baseline that executes workload locally and an average of 13% energy savings compared to a baseline that offloads vehicles workloads to RSUs. 
    more » « less
  2. Recently, with the advent of the Internet of everything and 5G network, the amount of data generated by various edge scenarios such as autonomous vehicles, smart industry, 4K/8K, virtual reality (VR), augmented reality (AR), etc., has greatly exploded. All these trends significantly brought real-time, hardware dependence, low power consumption, and security requirements to the facilities, and rapidly popularized edge computing. Meanwhile, artificial intelligence (AI) workloads also changed the computing paradigm from cloud services to mobile applications dramatically. Different from wide deployment and sufficient study of AI in the cloud or mobile platforms, AI workload performance and their resource impact on edges have not been well understood yet. There lacks an in-depth analysis and comparison of their advantages, limitations, performance, and resource consumptions in an edge environment. In this paper, we perform a comprehensive study of representative AI workloads on edge platforms. We first conduct a summary of modern edge hardware and popular AI workloads. Then we quantitatively evaluate three categories (i.e., classification, image-to-image, and segmentation) of the most popular and widely used AI applications in realistic edge environments based on Raspberry Pi, Nvidia TX2, etc. We find that interaction between hardware and neural network models incurs non-negligible impact and overhead on AI workloads at edges. Our experiments show that performance variation and difference in resource footprint limit availability of certain types of workloads and their algorithms for edge platforms, and users need to select appropriate workload, model, and algorithm based on requirements and characteristics of edge environments. 
    more » « less
  3. Edge computing allows end-user devices to offload heavy computation to nearby edge servers for reduced latency, maximized profit, and/or minimized energy consumption. Data-dependent tasks that analyze locally-acquired sensing data are one of the most common candidates for task offloading in edge computing. As a result, the total latency and network load are affected by the total amount of data transferred from end-user devices to the selected edge servers. Most existing solutions for task allocation in edge computing do not take into consideration that some user tasks may actually operate on the same data items. Making the task allocation algorithm aware of the existing data sharing characteristics of tasks can help reduce network load at a negligible profit loss by allocating more tasks sharing data on the same server. In this paper, we formulate the data sharing-aware task allocation problem that make decisions on task allocation for maximized profit and minimized network load by taking into account the data-sharing characteristics of tasks. In addition, because the problem is NP-hard, we design the DSTA algorithm, which finds a solution to the problem in polynomial time. We analyze the performance of the proposed algorithm against a state-of-the-art baseline that only maximizes profit. Our extensive analysis shows that DSTA leads to about 8 times lower data load on the network while being within 1.03 times of the total profit on average compared to the state-of-the-art. 
    more » « less
  4. Connected Autonomous Vehicles (CAVs) have achieved significant improvements in recent years. The CAVs can share sensor data to improve autonomous driving performance and enhance road safety. CAV architecture depends on roadside edge servers for latency-sensitive applications. The roadside edge servers are equipped with high-performance embedded edge computing devices that perform calculations with low power requirements. As the number of vehicles varies over different times of the day and vehicles can request for different CAV applications, the computation requirements for roadside edge computing platform can also vary. Hence, a framework for dynamic deployment of edge computing platforms can ensure CAV applications’ performance and proper usage of the devices. In this paper, we propose R-CAV – a framework for drone-based roadside edge server deployment that provides roadside units (RSUs) based on the computation requirement. Our proof of concept implementation for object detection algorithm using Nvidia Jetson nano demonstrates the proposed framework's feasibility. We posit that the framework will enhance the intelligent transport system vision by ensuring CAV applications’ quality of service. 
    more » « less
  5. This paper addresses the design of accelerators using systolic architectures to train convolutional neural networks using a novel gradient interleaving approach. Training the neural network involves computation and backpropagation of gradients of error with respect to the activation functions and weights. It is shown that the gradient with respect to the activation function can be computed using a weight-stationary systolic array, while the gradient with respect to the weights can be computed using an output-stationary systolic array. The novelty of the proposed approach lies in interleaving the computations of these two gradients on the same configurable systolic array. This results in the reuse of the variables from one computation to the other and eliminates unnecessary memory accesses and energy consumption associated with these memory accesses. The proposed approach leads to 1.4−2.2× savings in terms of the number of cycles and 1.9× savings in terms of memory accesses in the fully-connected layer. Furthermore, the proposed method uses up to 25% fewer cycles and memory accesses, and 16% less energy than baseline implementations for state-of-the-art CNNs. Under iso-area comparisons, for Inception-v4, compared to weight-stationary (WS), Intergrad achieves 12% savings in energy, 17% savings in memory, and 4% savings in cycles. Savings for Densenet-264 are 18% , 26% , and 27% with respect to energy, memory, and cycles, respectively. Thus, the proposed novel accelerator architecture reduces the latency and energy consumption for training deep neural networks. 
    more » « less