Biology education research (BER), currently conducted mostly at four‐year colleges and universities, is changing the culture of teaching biology and improving student success. We are community college faculty participating in the NSF‐funded CC Bio INSITES network, getting training and support in BER to ask questions to improve student success in our highly diverse classes. Our research adapts and validates existing BER surveys and interventions in Hispanic‐serving college settings, with pre‐health professions’ students, and with traditionally underserved populations in STEM. BER projects serve assessment and program review goals common across many community colleges, and when implemented with high‐impact practices, BER measures the gains in student retention and success. We call for support to continue changing the culture of discipline‐based education research at community colleges.
Framework to Enhance STEM Education for Community College Students
Community colleges (CCs) play a critical role in advancing the education of all learners. Approximately 40% of first-time college freshman begin in Community Colleges. The proposed framework seeks to support and excite CC students to persist in their STEM education to increase the pipeline for the STEM workforce. Its vision is to provide CC students engineering skills and to excite them about engineering research. The framework enables students to spend 10 summer weeks at Northeastern University to increase skills, confidence, and learn firsthand about research. Each student will join a research lab, working with faculty and graduate student mentors. Also, students will be mentored after summer to further support their successful graduation and/or transfer to a 4-year institution and beyond. The site is guided by two of the grand challenges of the National Academy of Engineering: personalized learning and scientific discovery. Unique aspects of the proposed framework include: a hands-on short course in engineering topics and software tools; formal mentor training including modules for mentoring CC students; daily student meetings with mentors; extensive professional development seminars; formal research training including daily reflection journals, poster presentations and technical writing with a faculty member; and recruitment from a unique pool of highly talented URM students.
more »
« less
- Award ID(s):
- 2150417
- NSF-PAR ID:
- 10394404
- Date Published:
- Journal Name:
- European Journal of Education and Pedagogy
- Volume:
- 3
- Issue:
- 3
- ISSN:
- 2736-4534
- Page Range / eLocation ID:
- 36 to 41
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
This work in progress paper presents an overview of the Hispanic Alliance for the Graduate Education and the Professoriate (H-AGEP) program. H-AGEP is working on developing and implementing a new model to improve the preparation and transition of Hispanic STEM doctoral students into community college faculty positions. The partnership is a collaborative effort between the City College of New York (CCNY) (lead institution) and The University of Texas at El Paso (UTEP) along with a group of partner community colleges: LaGuardia Community College, Queensborough Community College, and El Paso Community College. The H-AGEP model consists of three main elements: (1) a training and mentoring program for effective STEM teaching at community colleges; (2) a training program for effective mentoring of community college students in STEM research; and (3) a professional development program to address career preparation, transitioning, and advancement at academic careers in community colleges. H-AGEP research goals are: (1) to consider the collected evaluation and research data to determine what intervention activities are most impactful, and (2) to better understand the career-decision making process of Hispanic STEM doctoral students regarding whether they will seek employment at community colleges and other two-year institutions. An interesting aspect of the partnership is that the institutions in El Paso, Texas, serve primarily a Mexican-American student population while the New York institutions serve primarily a Hispanic population of Caribbean origin. This provides the unique opportunity to compare Hispanic students from both groups. The program evaluation: (1) documents and provides feedback on H-AGEP activities and model implementation; and (2) assesses the extent to which H-AGEP is achieving its intended outcomes. Assessment results on the first cohort of students in the program show the value of including community college faculty as career and teaching mentors in the program. Furthermore, the effect of model interventions in students from the first cohort show positive advances in improving teaching skills, increasing student professional networks, and increasing interest and awareness in careers at community college.more » « less
-
null (Ed.)The National Science Foundation (NSF) Emerging Frontiers and Innovation (EFRI) Research Experience and Mentoring (REM) program nationally supports hands-on research and ongoing mentorship in STEM fields at various universities and colleges. The NSF EFRI-REM Mentoring Catalyst initiative was designed to build and train these robust, interactive research mentoring communities that are composed of faculty, postdoctoral associates and graduate student mentors, to broaden participation of underrepresented groups in STEM research who are funded through NSF EFRI-REM. This work-in-progress paper describes the first five years of this initiative, where interactive training programs were implemented from multiple frameworks of effective mentoring. Principal investigators, postdoctoral associates and graduate students are often expected to develop and establish mentoring plans without any formal training in how to be effective mentors. Since the start of this initiative, over 300 faculty, postdoctoral associates and graduate students have been trained on promising practices, strategies, and tools to enhance their research mentoring experiences. In addition to formal mentor training, opportunities to foster a community of practice with current mentors and past mentor training participants (sage mentors) were provided. During these interactions, promising mentoring practices were shared to benefit the mentors and the different mentoring populations that the EFRI-REMs serve. The community of practice connected a diverse group of institutions and faculty to help the EFRI-REM community in its goal of broadening participation across a range of STEM disciplines. Those institutions are then able to discuss, distill and disseminate best practices around the mentoring of participants through targeted mentored training beyond the EFRI-REM at their home institutions. Not only does the EFRI-REM Catalyst initiative focus on broadening participation via strategic training of research mentors, it also empowers mentees, including undergraduate and graduate students and postdoctoral associates, in their research experiences through an entering research undergraduate course and formal mentoring training workshops. Future expansion to other academic units (e.g., colleges, universities) builds on the research collaborations and the initiatives developed and presented in this work-in-progress paper. A long-term goal is to provide insights via collaborative meetings (e.g., webinars, presentations) for STEM and related faculty who are assembling an infrastructure (e.g., proposals for the ERFI-REM program) across a range of research structures. In summary, this work-in-progress paper provides a description of the design and implementation of this initiative, preliminary findings, expanding interactions to other NSF supported Engineering Research Centers, and the future directions of the EFRI-REM Mentoring Catalyst initiative.more » « less
-
Broadening participation in engineering among underrepresented minority students remains a big challenge for institutions of higher education. Since a large majority of underrepresented students attend community colleges, engineering transfer programs at these community colleges can play an important role in addressing this challenge. However, for most community college engineering programs, developing strategies and programs to increase the number and diversity of students successfully pursuing careers in engineering is especially challenging due to limited expertise, shrinking resources, and continuing budget crises. This paper is a description of how a small engineering transfer program at a Hispanic-Serving community college in California developed effective partnerships with high schools, other institutions of higher education, and industry partners in order to create opportunities for underrepresented community college students to excel in engineering. Developed through these partnerships are programs for high school students, current community college students, and community college engineering faculty. Programs for high school students include a) the Summer Engineering Institute – a two-week residential summer camp for sophomore and junior high school students, and b) the STEM Institute – a three-week program for high school freshmen to explore STEM fields. Academic and support programs for college students include: a) Math Jam – a one-week intensive math placement test review and preparation program; b) a scholarship and mentoring program academically talented and financially needy STEM students; c) a two-week introduction to research program held during the winter break to prepare students for research internships; d) a ten-week summer research internship program; e) Physics Jam – an intensive program to prepare students for success in Physics; f) Embedded Peer Instruction Cohort – a modified Supplemental Instruction program for STEM courses; g) STEM Speaker Series – a weekly presentation by professionals talking about their career and educational paths. Programs for community college STEM faculty and transfer programs include: a) Summer Engineering Teaching Institute – a two-day teaching workshop for community college STEM faculty; b) Joint Engineering Program – a consortium of 28 community college engineering programs all over California to align curriculum, improve teaching effectiveness, improve the engineering transfer process, and strengthen community college engineering transfer programs; c) Creating Alternative Learning Strategies for Transfer Engineering Programs – a collaborative program that aims to increase access to engineering courses for community college students through online instruction and alternative classroom models; and d) California Lower-Division Engineering Articulation Workshop – to align the engineering curriculum. In addition to describing the development and implementation of these programs, the paper will also provide details on how they have contributed to increasing the interest, facilitating the entry, improving the retention and enhancing the success of underrepresented minority students in engineering, as well as contributing to the strengthening of the community college engineering education pipeline.more » « less
-
Colleges are becoming increasingly diverse, including strengthening representation of students with disabilities in STEM (Science, Teaching, Engineering, and Math) fields; however, representation still lags behind national trends. To adapt to this changing demographic and improve representation, STEM college professors must be prepared to grant equitable access to the STEM curriculum and enhance scientific communication skills. This practice brief outlines how a college science faculty applied the Universal Design for Learning (UDL) framework to improve scientific communication skills equitably among college students with diverse needs during a 10-week NSF-REU (National Science Foundation – Research Experiences for Undergraduates) at the host institution summer program during the COVID-19 pandemic. It also provides recommendations about how students with disabilities (i.e., chronic illness, chronic pain, depression, anxiety, and attention deficit hyperactivity disorder [ADHD]) which may have been exacerbated by the COVID-19 pandemic. Applying the UDL framework increased student confidence in applying the scientific method and led to gains in students' perception of their ability to use their skills to solve scientific problems. STEM faculty can use the lessons from the NSF-REU summer program outlined in this work to develop inclusive and accessible STEM programs for students with diverse needs across the country. Moreover, this work highlights the need for STEM faculty to involve Disability Services coordinators as active members in research programs to ensure equity and inclusion.more » « less