skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterizing equitable access to grocery stores during disasters using location-based data
Abstract Natural hazards cause disruptions in access to critical facilities, such as grocery stores, impeding residents’ ability to prepare for and cope with hardships during the disaster and recovery; however, disrupted access to critical facilities is not equal for all residents of a community. In this study, we examine disparate access to grocery stores in the context of the 2017 Hurricane Harvey in Harris County, Texas. We utilized high-resolution location-based datasets in implementing spatial network analysis and dynamic clustering techniques to uncover the overall disparate access to grocery stores for socially vulnerable populations during different phases of the disaster. Three access indicators are examined using network-centric measures: number of unique stores visited, average trip time to stores, and average distance to stores. These access indicators help us capture three dimensions of access: redundancy , rapidity , and proximity . The findings show the insufficiency of focusing merely on the distributional factors, such as location in a food desert and number of facilities, to capture the disparities in access, especially during the preparation and impact/short-term recovery periods. Furthermore, the characterization of access by considering combinations of access indicators reveals that flooding disproportionally affects socially vulnerable populations. High-income areas have better access during the preparation period as they are able to visit a greater number of stores and commute farther distances to obtain supplies. The conclusions of this study have important implications for urban development (facility distribution), emergency management, and resource allocation by identifying areas most vulnerable to disproportionate access impacts using more equity-focused and data-driven approaches.  more » « less
Award ID(s):
1846069
PAR ID:
10394487
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hurricanes are one of the most catastrophic natural hazards faced by residents of the United States. Improving the public’s hurricane preparedness is essential to reduce the impact and disruption of hurricanes on households. Inherent in traditional methods for quantifying and monitoring hurricane preparedness are significant lags, which hinder effective monitoring of residents’ preparedness in advance of an impending hurricane. This study establishes a methodological framework to quantify the extent, timing, and spatial variation of hurricane preparedness at the census block group level using high-resolution location intelligence data. Anonymized cell phone data on visits to points-of-interest for each census block group in Harris County before 2017 Hurricane Harvey were used to examine residents’ hurricane preparedness. Four categories of points-of-interest, grocery stores, gas stations, pharmacies and home improvement stores, were identified as they have close relationship with hurricane preparedness, and the daily number of visits from each CBG to these four categories of POIs were calculated during preparation period. Two metrics, extent of preparedness and proactivity, were calculated based on the daily visit percentage change compared to the baseline period. The results show that peak visits to pharmacies often occurred in the early stage of preparation, whereas the peak of visits to gas stations happened closer to hurricane landfall. The spatial and temporal patterns of visits to grocery stores and home improvement stores were quite similar. However, correlation analysis demonstrates that extent of preparedness and proactivity are independent of each other. Combined with synchronous evacuation data, CBGs in Harris County were divided into four clusters in terms of extent of preparedness and evacuation rate. The clusters with low preparedness and low evacuation rate were identified as hotspots of vulnerability for shelter-in-place households that would need urgent attention during response. Hence, the research findings provide a new data-driven approach to quantify and monitor the extent, timing, and spatial variations of hurricane preparedness. Accordingly, the study advances data-driven understanding of human protective actions during disasters. The study outcomes also provide emergency response managers and public officials with novel data-driven insights to more proactively monitor residents’ disaster preparedness, making it possible to identify under-prepared areas and better allocate resources in a timely manner. 
    more » « less
  2. Abstract Limited access to food stores is often linked to higher health risks and lower community resilience. Socially vulnerable populations experience persistent disparities in equitable food store access. However, little research has been done to examine how people's access to food stores is affected by natural disasters. Previous studies mainly focus on examining potential access using the travel distance to the nearest food store, which often falls short of capturing the actual access of people. Therefore, to fill this gap, this paper incorporates human mobility patterns into the measure of actual access, leveraging large‐scale mobile phone data. Specifically, we propose a novel enhanced two‐step floating catchment area method with travel preferences (E2SFCA‐TP) to measure accessibility, which extends the traditional E2SFCA model by integrating actual human mobility behaviors. We then analyze people's actual access to grocery and convenience stores across both space and time under the devastating winter storm Uri in Harris County, Texas. Our results highlight the value of using human mobility patterns to better reflect people's actual access behaviors. The proposed E2SFCA‐TP measure is more capable of capturing mobility variations in people's access, compared with the traditional E2SFCA measure. This paper provides insights into food store access across space and time, which could aid decision making in resource allocation to enhance accessibility and mitigate the risk of food insecurity in underserved areas. 
    more » « less
  3. The objective of this study is to examine spatial patterns of disaster impacts and recovery of communities based on fluctuations in credit card transactions (CCTs). Such fluctuations could capture the collective effects of household impacts, disrupted accesses, and business closures and thus provide an integrative measure for examining disaster impacts and community recovery. Existing studies depend mainly on survey and sociodemographic data for disaster impacts and recovery effort evaluations, although such data has limitations, including large data collection efforts and delayed timeliness results. Also, there are very few studies have concentrated on spatial patterns of disaster impacts and short-term recovery of communities, although such investigation can enhance situational awareness during disasters and support the identification of disparate spatial patterns of disaster impacts and recovery in the impacted regions. This study examines CCTs data Harris County (Texas, USA) during Hurricane Harvey in 2017 to explore spatial patterns of disaster impacts and recovery duration from the perspective of community residents and businesses at ZIP-code and county scales, respectively, and to further investigate their spatial disparities across ZIP codes. The results indicate that individuals in ZIP codes with populations of higher income experienced more severe disaster impact and recovered more quickly than those located in lower income ZIP codes for most business sectors. Our findings not only enhance the understanding of spatial patterns and disparities in disaster impacts and recovery for better community resilience assessment but also could benefit emergency managers, city planners, and public officials in enhanced situational awareness and resource allocation. 
    more » « less
  4. Extreme weather events have significant economic and social impacts, disrupting essential public services like electricity, phone communication, and transportation. This study seeks to understand the performance and resilience of critical infrastructure systems in Houston, Texas, using Hurricane Harvey (2017) as a case study. We surveyed 500 Houston Metropolitan Statistical Area residents after Hurricane Harvey’s landfall about disruption experience in electricity, water, phone/cellphone, internet, public transportation, workplace, and grocery stores. Our household survey data revealed the proportion and duration of disruption in each system. Approximately 70% of respondents reported experiencing electricity outages, while half (51%) had no access to water for up to six days. Two-thirds of surveyed households lacked internet access, and 50% had their phone services disconnected. Additionally, around 71% of respondents were unable to commute to work, and 73% were unable to purchase groceries for their families during this period. We incorporated the household survey responses into the Dynamic Inoperability Input-Output Model (DIIM) to estimate inoperability and economic losses across interconnected sectors. The projected economic loss was estimated to be in the range of $6.7- $9.7 billion when sensitivity analysis is performed with respect to the number of working days. Understanding the resilience of each sector and the inherent interdependencies among them can provide beneficial insight to policymakers for disaster risk management, notably preparedness and recovery planning for future events. 
    more » « less
  5. Shaw, Shih-Lung; Sui, Daniel (Ed.)
    When the World Health Organization (WHO) announced the pandemic of COVID-19, people around the globe scattered to stores for groceries, supplies, and other miscellaneous items in preparation for quarantine. The dynamics of retail visits changed dramatically due to the pandemic outbreak. The study intends to analyze how the store visit patterns have changed due to the lockdown policies during the COVID-19 pandemic. Using mobile phone location data, we build a time-aware Huff model to estimate and compare the visiting probability of different brands of stores over different time periods. We are able to identify certain retail and grocery stores that have more or fewer visits due to the pandemic outbreak, and we detect whether there are any trends in visiting certain retail establishments (e.g., department stores, grocery stores, fast-food restaurants, and cafes) and how the visiting patterns have adjusted with lockdowns. We also make comparisons among brands across three highly populated U.S. cities to identify potential regional variability. It has been found that people in large metropolitan areas with a well-developed transit system tend to show less sensitivity to long-distance visits. In addition, Target, which is a department store, is found to be more negatively affected by longer-distance trips than other grocery stores after the lockdown. The findings can be further applied to support policymaking related to public health, urban planning, transportation, and business in post-pandemic cities. 
    more » « less