skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interictal EEG and ECG for SUDEP Risk Assessment: A Retrospective Multicenter Cohort Study
Objective Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality. Although lots of effort has been made in identifying clinical risk factors for SUDEP in the literature, there are few validated methods to predict individual SUDEP risk. Prolonged postictal EEG suppression (PGES) is a potential SUDEP biomarker, but its occurrence is infrequent and requires epilepsy monitoring unit admission. We use machine learning methods to examine SUDEP risk using interictal EEG and ECG recordings from SUDEP cases and matched living epilepsy controls. Methods This multicenter, retrospective, cohort study examined interictal EEG and ECG recordings from 30 SUDEP cases and 58 age-matched living epilepsy patient controls. We trained machine learning models with interictal EEG and ECG features to predict the retrospective SUDEP risk for each patient. We assessed cross-validated classification accuracy and the area under the receiver operating characteristic (AUC) curve. Results The logistic regression (LR) classifier produced the overall best performance, outperforming the support vector machine (SVM), random forest (RF), and convolutional neural network (CNN). Among the 30 patients with SUDEP [14 females; mean age (SD), 31 (8.47) years] and 58 living epilepsy controls [26 females (43%); mean age (SD) 31 (8.5) years], the LR model achieved the median AUC of 0.77 [interquartile range (IQR), 0.73–0.80] in five-fold cross-validation using interictal alpha and low gamma power ratio of the EEG and heart rate variability (HRV) features extracted from the ECG. The LR model achieved the mean AUC of 0.79 in leave-one-center-out prediction. Conclusions Our results support that machine learning-driven models may quantify SUDEP risk for epilepsy patients, future refinements in our model may help predict individualized SUDEP risk and help clinicians correlate predictive scores with the clinical data. Low-cost and noninvasive interictal biomarkers of SUDEP risk may help clinicians to identify high-risk patients and initiate preventive strategies.  more » « less
Award ID(s):
1835000
PAR ID:
10394669
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Neurology
Volume:
13
ISSN:
1664-2295
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract ObjectiveAnterior temporal lobectomy (ATL) is a widely performed and successful intervention for drug‐resistant temporal lobe epilepsy (TLE). However, up to one third of patients experience seizure recurrence within 1 year after ATL. Despite the extensive literature on presurgical electroencephalography (EEG) and magnetic resonance imaging (MRI) abnormalities to prognosticate seizure freedom following ATL, the value of quantitative analysis of visually reviewed normal interictal EEG in such prognostication remains unclear. In this retrospective multicenter study, we investigate whether machine learning analysis of normal interictal scalp EEG studies can inform the prediction of postoperative seizure freedom outcomes in patients who have undergone ATL. MethodsWe analyzed normal presurgical scalp EEG recordings from 41 Mayo Clinic (MC) and 23 Cleveland Clinic (CC) patients. We used an unbiased automated algorithm to extract eyes closed awake epochs from scalp EEG studies that were free of any epileptiform activity and then extracted spectral EEG features representing (a) spectral power and (b) interhemispheric spectral coherence in frequencies between 1 and 25 Hz across several brain regions. We analyzed the differences between the seizure‐free and non–seizure‐free patients and employed a Naïve Bayes classifier using multiple spectral features to predict surgery outcomes. We trained the classifier using a leave‐one‐patient‐out cross‐validation scheme within the MC data set and then tested using the out‐of‐sample CC data set. Finally, we compared the predictive performance of normal scalp EEG‐derived features against MRI abnormalities. ResultsWe found that several spectral power and coherence features showed significant differences correlated with surgical outcomes and that they were most pronounced in the 10–25 Hz range. The Naïve Bayes classification based on those features predicted 1‐year seizure freedom following ATL with area under the curve (AUC) values of 0.78 and 0.76 for the MC and CC data sets, respectively. Subsequent analyses revealed that (a) interhemispheric spectral coherence features in the 10–25 Hz range provided better predictability than other combinations and (b) normal scalp EEG‐derived features provided superior and potentially distinct predictive value when compared with MRI abnormalities (>10% higher F1 score). SignificanceThese results support that quantitative analysis of even a normal presurgical scalp EEG may help prognosticate seizure freedom following ATL in patients with drug‐resistant TLE. Although the mechanism for this result is not known, the scalp EEG spectral and coherence properties predicting seizure freedom may represent activity arising from the neocortex or the networks responsible for temporal lobe seizure generation within vs outside the margins of an ATL. 
    more » « less
  2. Objectives: We set out to develop a machine learning model capable of distinguishing patients presenting with ischemic stroke from a healthy cohort of subjects. The model relies on a 3-min resting electroencephalogram (EEG) recording from which features can be computed. Materials and methods: Using a large-scale, retrospective database of EEG recordings and matching clinical reports, we were able to construct a dataset of 1385 healthy subjects and 374 stroke patients. With subjects often producing more than one recording per session, the final dataset consisted of 2401 EEG recordings (63% healthy, 37% stroke). Results: Using a rich set of features encompassing both the spectral and temporal domains, our model yielded an AUC of 0.95, with a sensitivity and specificity of 93% and 86%, respectively. Allowing for multiple recordings per subject in the training set boosted sensitivity by 7%, attributable to a more balanced dataset. Conclusions: Our work demonstrates strong potential for the use of EEG in conjunction with machine learning methods to distinguish stroke patients from healthy subjects. Our approach provides a solution that is not only timely (3-minutes recording time) but also highly precise and accurate (AUC: 0.95). Keywords: Electroencephalogram (EEG); Feature engineering; Ischemic stroke; Large vessel occlusion; Machine learning; Prehospital stroke scale. 
    more » « less
  3. null (Ed.)
    Using electroencephalography (EEG) data from epileptic patients 1 , we investigated and compared functional connectivity networks of three various types of epileptiform discharges (ED; single, complex & repetitive spikes) in 4 regions of the brain. Our results showed different connectivity patterns among three ED types within-and between-brain regions. The one-way ANOVA test indicated significant differences between the mean of the average connectivity matrices (ACMs) of the single spike, which characterize focal epilepsy, and the other two ED types (complex & repetitive) which characterize generalized epilepsy. The interictal EEG segments, through the connectivity patterns they yield, could be considered as one of the key indicators for the diagnosis of focal or generalized epilepsy. 
    more » « less
  4. null (Ed.)
    Background The novel coronavirus SARS-CoV-2 and its associated disease, COVID-19, have caused worldwide disruption, leading countries to take drastic measures to address the progression of the disease. As SARS-CoV-2 continues to spread, hospitals are struggling to allocate resources to patients who are most at risk. In this context, it has become important to develop models that can accurately predict the severity of infection of hospitalized patients to help guide triage, planning, and resource allocation. Objective The aim of this study was to develop accurate models to predict the mortality of hospitalized patients with COVID-19 using basic demographics and easily obtainable laboratory data. Methods We performed a retrospective study of 375 hospitalized patients with COVID-19 in Wuhan, China. The patients were randomly split into derivation and validation cohorts. Regularized logistic regression and support vector machine classifiers were trained on the derivation cohort, and accuracy metrics (F1 scores) were computed on the validation cohort. Two types of models were developed: the first type used laboratory findings from the entire length of the patient’s hospital stay, and the second type used laboratory findings that were obtained no later than 12 hours after admission. The models were further validated on a multicenter external cohort of 542 patients. Results Of the 375 patients with COVID-19, 174 (46.4%) died of the infection. The study cohort was composed of 224/375 men (59.7%) and 151/375 women (40.3%), with a mean age of 58.83 years (SD 16.46). The models developed using data from throughout the patients’ length of stay demonstrated accuracies as high as 97%, whereas the models with admission laboratory variables possessed accuracies of up to 93%. The latter models predicted patient outcomes an average of 11.5 days in advance. Key variables such as lactate dehydrogenase, high-sensitivity C-reactive protein, and percentage of lymphocytes in the blood were indicated by the models. In line with previous studies, age was also found to be an important variable in predicting mortality. In particular, the mean age of patients who survived COVID-19 infection (50.23 years, SD 15.02) was significantly lower than the mean age of patients who died of the infection (68.75 years, SD 11.83; P<.001). Conclusions Machine learning models can be successfully employed to accurately predict outcomes of patients with COVID-19. Our models achieved high accuracies and could predict outcomes more than one week in advance; this promising result suggests that these models can be highly useful for resource allocation in hospitals. 
    more » « less
  5. Epilepsy is a brain disorder that causes seizures, affecting nearly half a million children in the US alone. In this study, we aimed to use a nonlinear driven method to characterize scalp EEG recordings of pediatric epilepsy patients (PE: n=7) compared to pediatric control subjects (PC: n=7) in a clinical environment. A time-varying approach was used to construct functional connectivity networks (FCNs) of all subjects. Next, the FCNs are mapped into the form of undirected graphs that are subjected to the extraction of graph theory-based features. An unsupervised clustering technique based on K-mean is used to delineate the PE from the PC group. Our findings show a statistically significant difference in the mean FCNs between PC and PE groups (t(340)=- 15.9899, p<< 0.0001). Performance results showed an accuracy of 92.5% with a sensitivity of 90% and a specificity of 95.3%. This approach can help improve and validate the early diagnosis of PE by applying non-invasive scalp EEG signals. 
    more » « less