Abstract ObjectiveAnterior temporal lobectomy (ATL) is a widely performed and successful intervention for drug‐resistant temporal lobe epilepsy (TLE). However, up to one third of patients experience seizure recurrence within 1 year after ATL. Despite the extensive literature on presurgical electroencephalography (EEG) and magnetic resonance imaging (MRI) abnormalities to prognosticate seizure freedom following ATL, the value of quantitative analysis of visually reviewed normal interictal EEG in such prognostication remains unclear. In this retrospective multicenter study, we investigate whether machine learning analysis of normal interictal scalp EEG studies can inform the prediction of postoperative seizure freedom outcomes in patients who have undergone ATL. MethodsWe analyzed normal presurgical scalp EEG recordings from 41 Mayo Clinic (MC) and 23 Cleveland Clinic (CC) patients. We used an unbiased automated algorithm to extract eyes closed awake epochs from scalp EEG studies that were free of any epileptiform activity and then extracted spectral EEG features representing (a) spectral power and (b) interhemispheric spectral coherence in frequencies between 1 and 25 Hz across several brain regions. We analyzed the differences between the seizure‐free and non–seizure‐free patients and employed a Naïve Bayes classifier using multiple spectral features to predict surgery outcomes. We trained the classifier using a leave‐one‐patient‐out cross‐validation scheme within the MC data set and then tested using the out‐of‐sample CC data set. Finally, we compared the predictive performance of normal scalp EEG‐derived features against MRI abnormalities. ResultsWe found that several spectral power and coherence features showed significant differences correlated with surgical outcomes and that they were most pronounced in the 10–25 Hz range. The Naïve Bayes classification based on those features predicted 1‐year seizure freedom following ATL with area under the curve (AUC) values of 0.78 and 0.76 for the MC and CC data sets, respectively. Subsequent analyses revealed that (a) interhemispheric spectral coherence features in the 10–25 Hz range provided better predictability than other combinations and (b) normal scalp EEG‐derived features provided superior and potentially distinct predictive value when compared with MRI abnormalities (>10% higher F1 score). SignificanceThese results support that quantitative analysis of even a normal presurgical scalp EEG may help prognosticate seizure freedom following ATL in patients with drug‐resistant TLE. Although the mechanism for this result is not known, the scalp EEG spectral and coherence properties predicting seizure freedom may represent activity arising from the neocortex or the networks responsible for temporal lobe seizure generation within vs outside the margins of an ATL. 
                        more » 
                        « less   
                    
                            
                            Interictal EEG and ECG for SUDEP Risk Assessment: A Retrospective Multicenter Cohort Study
                        
                    
    
            Objective Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality. Although lots of effort has been made in identifying clinical risk factors for SUDEP in the literature, there are few validated methods to predict individual SUDEP risk. Prolonged postictal EEG suppression (PGES) is a potential SUDEP biomarker, but its occurrence is infrequent and requires epilepsy monitoring unit admission. We use machine learning methods to examine SUDEP risk using interictal EEG and ECG recordings from SUDEP cases and matched living epilepsy controls. Methods This multicenter, retrospective, cohort study examined interictal EEG and ECG recordings from 30 SUDEP cases and 58 age-matched living epilepsy patient controls. We trained machine learning models with interictal EEG and ECG features to predict the retrospective SUDEP risk for each patient. We assessed cross-validated classification accuracy and the area under the receiver operating characteristic (AUC) curve. Results The logistic regression (LR) classifier produced the overall best performance, outperforming the support vector machine (SVM), random forest (RF), and convolutional neural network (CNN). Among the 30 patients with SUDEP [14 females; mean age (SD), 31 (8.47) years] and 58 living epilepsy controls [26 females (43%); mean age (SD) 31 (8.5) years], the LR model achieved the median AUC of 0.77 [interquartile range (IQR), 0.73–0.80] in five-fold cross-validation using interictal alpha and low gamma power ratio of the EEG and heart rate variability (HRV) features extracted from the ECG. The LR model achieved the mean AUC of 0.79 in leave-one-center-out prediction. Conclusions Our results support that machine learning-driven models may quantify SUDEP risk for epilepsy patients, future refinements in our model may help predict individualized SUDEP risk and help clinicians correlate predictive scores with the clinical data. Low-cost and noninvasive interictal biomarkers of SUDEP risk may help clinicians to identify high-risk patients and initiate preventive strategies. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1835000
- PAR ID:
- 10394669
- Date Published:
- Journal Name:
- Frontiers in Neurology
- Volume:
- 13
- ISSN:
- 1664-2295
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Objectives: We set out to develop a machine learning model capable of distinguishing patients presenting with ischemic stroke from a healthy cohort of subjects. The model relies on a 3-min resting electroencephalogram (EEG) recording from which features can be computed. Materials and methods: Using a large-scale, retrospective database of EEG recordings and matching clinical reports, we were able to construct a dataset of 1385 healthy subjects and 374 stroke patients. With subjects often producing more than one recording per session, the final dataset consisted of 2401 EEG recordings (63% healthy, 37% stroke). Results: Using a rich set of features encompassing both the spectral and temporal domains, our model yielded an AUC of 0.95, with a sensitivity and specificity of 93% and 86%, respectively. Allowing for multiple recordings per subject in the training set boosted sensitivity by 7%, attributable to a more balanced dataset. Conclusions: Our work demonstrates strong potential for the use of EEG in conjunction with machine learning methods to distinguish stroke patients from healthy subjects. Our approach provides a solution that is not only timely (3-minutes recording time) but also highly precise and accurate (AUC: 0.95). Keywords: Electroencephalogram (EEG); Feature engineering; Ischemic stroke; Large vessel occlusion; Machine learning; Prehospital stroke scale.more » « less
- 
            Abstract ObjectiveCognitive impairment often impacts quality of life in epilepsy even if seizures are controlled. Word‐finding difficulty is particularly prevalent and often attributed to etiological (static, baseline) circuit alterations. We sought to determine whether interictal discharges convey significant superimposed contributions to word‐finding difficulty in patients, and if so, through which cognitive mechanism(s). MethodsTwenty‐three patients undergoing intracranial monitoring for drug‐resistant epilepsy participated in multiple tasks involving word production (auditory naming, short‐term verbal free recall, repetition) to probe word‐finding difficulty across different cognitive domains. We compared behavioral performance between trials with versus without interictal discharges across six major brain areas and adjusted for intersubject differences using mixed‐effects models. We also evaluated for subjective word‐finding difficulties through retrospective chart review. ResultsSubjective word‐finding difficulty was reported by the majority (79%) of studied patients preoperatively. During intracranial recordings, interictal epileptiform discharges (IEDs) in the medial temporal lobe were associated with long‐term lexicosemantic memory impairments as indexed by auditory naming (p = .009), in addition to their established impact on short‐term verbal memory as indexed by free recall (p = .004). Interictal discharges involving the lateral temporal cortex and lateral frontal cortex were associated with delayed reaction time in the auditory naming task (p = .016 andp = .018), as well as phonological working memory impairments as indexed by repetition reaction time (p = .002). Effects of IEDs across anatomical regions were strongly dependent on their precise timing within the task. SignificanceIEDs appear to act through multiple cognitive mechanisms to form a convergent basis for the debilitating clinical word‐finding difficulty reported by patients with epilepsy. This was particularly notable for medial temporal spikes, which are quite common in adult focal epilepsy. In parallel with the treatment of seizures, the modulation of interictal discharges through emerging pharmacological means and neurostimulation approaches may be an opportunity to help address devastating memory and language impairments in epilepsy.more » « less
- 
            null (Ed.)Using electroencephalography (EEG) data from epileptic patients 1 , we investigated and compared functional connectivity networks of three various types of epileptiform discharges (ED; single, complex & repetitive spikes) in 4 regions of the brain. Our results showed different connectivity patterns among three ED types within-and between-brain regions. The one-way ANOVA test indicated significant differences between the mean of the average connectivity matrices (ACMs) of the single spike, which characterize focal epilepsy, and the other two ED types (complex & repetitive) which characterize generalized epilepsy. The interictal EEG segments, through the connectivity patterns they yield, could be considered as one of the key indicators for the diagnosis of focal or generalized epilepsy.more » « less
- 
            null (Ed.)Background The novel coronavirus SARS-CoV-2 and its associated disease, COVID-19, have caused worldwide disruption, leading countries to take drastic measures to address the progression of the disease. As SARS-CoV-2 continues to spread, hospitals are struggling to allocate resources to patients who are most at risk. In this context, it has become important to develop models that can accurately predict the severity of infection of hospitalized patients to help guide triage, planning, and resource allocation. Objective The aim of this study was to develop accurate models to predict the mortality of hospitalized patients with COVID-19 using basic demographics and easily obtainable laboratory data. Methods We performed a retrospective study of 375 hospitalized patients with COVID-19 in Wuhan, China. The patients were randomly split into derivation and validation cohorts. Regularized logistic regression and support vector machine classifiers were trained on the derivation cohort, and accuracy metrics (F1 scores) were computed on the validation cohort. Two types of models were developed: the first type used laboratory findings from the entire length of the patient’s hospital stay, and the second type used laboratory findings that were obtained no later than 12 hours after admission. The models were further validated on a multicenter external cohort of 542 patients. Results Of the 375 patients with COVID-19, 174 (46.4%) died of the infection. The study cohort was composed of 224/375 men (59.7%) and 151/375 women (40.3%), with a mean age of 58.83 years (SD 16.46). The models developed using data from throughout the patients’ length of stay demonstrated accuracies as high as 97%, whereas the models with admission laboratory variables possessed accuracies of up to 93%. The latter models predicted patient outcomes an average of 11.5 days in advance. Key variables such as lactate dehydrogenase, high-sensitivity C-reactive protein, and percentage of lymphocytes in the blood were indicated by the models. In line with previous studies, age was also found to be an important variable in predicting mortality. In particular, the mean age of patients who survived COVID-19 infection (50.23 years, SD 15.02) was significantly lower than the mean age of patients who died of the infection (68.75 years, SD 11.83; P<.001). Conclusions Machine learning models can be successfully employed to accurately predict outcomes of patients with COVID-19. Our models achieved high accuracies and could predict outcomes more than one week in advance; this promising result suggests that these models can be highly useful for resource allocation in hospitals.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    