Unlike noble metals, refractory plasmonic materials can maintain resilient and attractive optical properties even at comparatively extreme temperatures and high current densities. One refractory plasmonic material of interest is TiN, which exhibits an extremely high melting temperature of about 3000 K and noble-metal-like optical properties in the visible and near-infrared regime. Using lithographically fabricated TiN nanowires and leveraging their ability to host plasmon modes, we have examined plasmonic photothermal heating and photothermoelectric response whose anisotropy and magnitude depend on the width of the nanowires. The photothermoelectric response is consistent with changes in the Seebeck coefficient where the wire fans out to wider contact pads. Upon electrically biasing the structures, Joule heating of the TiN wires can produce detectable thermal emission within the visible and near-IR range, with emission intensity growing rapidly with increasing bias. This emission is consistent with local temperatures exceeding 2000 K, as expected from a finite element model of the Joule heating. 
                        more » 
                        « less   
                    
                            
                            Full-color generation enabled by refractory plasmonic crystals
                        
                    
    
            Abstract Plasmonic structural color, in which vivid colors are generated via resonant nanostructures made of common plasmonic materials, such as noble metals have fueled worldwide interest in backlight-free displays. However, plasmonic colors that were withstanding ultrahigh temperatures without damage remain an unmet challenge due to the low melting point of noble metals. Here, we report the refractory hafnium nitride (HfN) plasmonic crystals that can generate full-visible color with a high image resolution of ∼63,500 dpi while withstanding a high temperature (900 °C). Plasmonic colors that reflect visible light could be attributed to the unique features in plasmonic HfN, a high bulk plasmon frequency of 3.1 eV, whichcould support localized surface plasmon resonance (LSPR) in the visible range. By tuning the wavelength of the LSPR, the reflective optical response can be controlled to generate the colors from blue to red across a wide gamut. The novel refractory plasmonic colors pave the way for emerging applications ranging from reflective displays to solar energy harvesting systems. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2113010
- PAR ID:
- 10394706
- Date Published:
- Journal Name:
- Nanophotonics
- Volume:
- 11
- Issue:
- 12
- ISSN:
- 2192-8606
- Page Range / eLocation ID:
- 2891 to 2899
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Multiferroic materials are an interesting functional material family combining two ferroic orderings, e.g. , ferroelectric and ferromagnetic orderings, or ferroelectric and antiferromagnetic orderings, and find various device applications, such as spintronics, multiferroic tunnel junctions, etc. Coupling multiferroic materials with plasmonic nanostructures offers great potential for optical-based switching in these devices. Here, we report a novel nanocomposite system consisting of layered Bi 1.25 AlMnO 3.25 (BAMO) as a multiferroic matrix and well dispersed plasmonic Au nanoparticles (NPs) and demonstrate that the Au nanoparticle morphology and the nanocomposite properties can be effectively tuned. Specifically, the Au particle size can be tuned from 6.82 nm to 31.59 nm and the 6.82 nm one presents the optimum ferroelectric and ferromagnetic properties and plasmonic properties. Besides the room temperature multiferroic properties, the BAMO-Au nanocomposite system presents other unique functionalities including localized surface plasmon resonance (LSPR), hyperbolicity in the visible region, and magneto-optical coupling, which can all be effectively tailored through morphology tuning. This study demonstrates the feasibility of coupling single phase multiferroic oxides with plasmonic metals for complex nanocomposite designs towards optically switchable spintronics and other memory devices.more » « less
- 
            Abstract The photophysical process of localized surface plasmon resonance (LSPR) is, for the first time, exploited for broadband photon harvesting in photo‐regulated controlled/living radical polymerization. Efficient macromolecular synthesis was achieved under illumination with light wavelengths extending from the visible to the near‐infrared regions. Plasmonic Ag nanostructures were in situ generated on Ag3PO4photocatalysts in a reversible addition‐fragmentation chain transfer (RAFT) system, thereby promoting polymerization of various monomers following a LSPR‐mediated electron transfer mechanism. Owing to the LSPR‐enhanced broadband photon harvesting, high monomer conversion (>99 %) was achieved under natural sunlight within 0.8 h. The deep penetration of NIR light enabled successful polymerization with reaction vessels screened by opaque barriers. Moreover, by trapping active oxygen species generated in the photocatalytic process, polymerization could be implemented without pre‐deoxygenation.more » « less
- 
            Abstract During the operation of a localized surface plasmon resonance (LSPR) sensor made in the form of a core–shell nanoparticle with the shell acting as a sensing layer, the target molecules penetrate into the shell due to intrinsic diffusion or reaction mechanisms. As a result, these molecules or various reactants are nonuniformly distributed in the shell layer. Such sensing particles are termed composition graded plasmonic particles, and their LSPR characteristics may be quite different from those of the uniform core–shell particles. Here, under the quasi-static assumption, a perturbation theory is developed to predict the LSPR properties of composition graded plasmonic particles. The effects of the composition gradient on the LSPR properties due to a metal hydride, a dielectric, and an effective medium are either numerically calculated or analytically derived. Our results show that various configurations of the composition gradient can tune the location and the amplitude of the LSPR peak. The results are important for understanding the sensing performance of composition graded plasmonic particles, and the perturbative treatment presented here can also be used for other composition graded structures.more » « less
- 
            Electronically doped metal oxide nanocrystals exhibit tunable infrared localized surface plasmon resonances (LSPRs). Despite the many benefits of IR resonant LSPRs in solution processable nanocrystals, the ways in which the electronic structure of the host semiconductor material impact metal oxide LSPRs are still being investigated. Semiconductors provide an alternative dielectric environment than metallically bonded solids, such as noble metals, which can impact how these materials undergo electronic relaxation following photoexcitation. Understanding these differences is key to developing applications that take advantage of the unique optical and electronic properties offered by plasmonic metal oxide NCs. Here, we use the two-temperature model in conjunction with femtosecond transient absorption experiments to describe how the internal temperature of two representative metal oxide nanocrystal systems, cubic WO 3−x and bixbyite Sn-doped In 2 O 3 , change following LSPR excitation. We find that the low free carrier concentrations of metal oxide NCs lead to less efficient heat generation as compared to metallic nanocrystals such as Ag. This suggests that metal oxide NCs may be ideal for applications wherein untoward heat generation may disrupt the application's overall performance, such as solar energy conversion and photonic gating.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    