skip to main content


Title: Crystal structure of a type III Rubisco in complex with its product 3‐phosphoglycerate
Abstract

The crystal structure of the complex of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) fromArchaeoglobus fulgidus(afRubisco) with its products 3PGAs has been determined to a resolution of 1.7 Å and is of the closed form. Type III Rubiscos such as afRubisco have 18 out of the 19 essential amino acid residues of canonical Rubisco; the 19th is Tyr rather than Phe. Superposition with the structure of a complex of the similar tkRubisco with the six‐carbon intermediate analog 2CABP shows the same conformation of the 19 residues except for Glu46 and Thr51. Glu46 adopts a unique conformation different from that in other Rubiscos and makes two H‐bonds with the ligand 3PGA. Similar to other closed state Rubiscos, the backbone of Thr51 is rotated and the side chain makes an H‐bond with the ligand 3PGA. Two product 3PGA molecules are bound at the active site, overlapping well with the 2CABP of tkRubisco/2CABP. The positions of the P1 and P2 phosphate groups differ by 0.4 and 0.53 Å, respectively, between 2CABP and the two 3PGAs. This afRubisco/3PGA complex mimics an intermediate stage of the carboxylation reaction which occurs after the production of the two 3PGA products but before the reopening of the active site. The stability of this complex suggests that the Rubisco active site will not reopen before both 3PGA products are formed.

 
more » « less
NSF-PAR ID:
10394853
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Proteins: Structure, Function, and Bioinformatics
Volume:
91
Issue:
3
ISSN:
0887-3585
Page Range / eLocation ID:
p. 330-337
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Structure and functions of S100 proteins are regulated by two distinct calcium binding EF hand motifs. In this work, we used solution‐state NMR spectroscopy to investigate the cooperativity between the two calcium binding sites and map the allosteric changes at the target binding site. To parse the contribution of the individual calcium binding events, variants of S100A12 were designed to selectively bind calcium to either the EF‐I (N63A) or EF‐II (E31A) loop, respectively. Detailed analysis of the backbone chemical shifts for wildtype protein and its mutants indicates that calcium binding to the canonical EF‐II loop is the principal trigger for the conformational switch between ‘closed’ apo to the ‘open’ Ca2+‐bound conformation of the protein. Elimination of binding in S100‐specific EF‐I loop has limited impact on the calcium binding affinity of the EF‐II loop and the concomitant structural rearrangement. In contrast, deletion of binding in the EF‐II loop significantly attenuates calcium affinity in the EF‐I loop and the structure adopts a ‘closed’ apo‐like conformation. Analysis of experimental amide nitrogen (15N) relaxation rates (R1,R2, and15N–{1H} NOE) and molecular dynamics (MD) simulations demonstrate that the calcium bound state is relatively floppy with pico–nanosecond motions induced in functionally relevant domains responsible for target recognition such as the hinge domain and the C‐terminal residues. Experimental relaxation studies combined with MD simulations show that while calcium binding in the EF‐I loop alone does not induce significant motions in the polypeptide chain, EF‐I regulates fluctuations in the polypeptide in the presence of bound calcium in the EF‐II loop. These results offer novel insights into the dynamic regulation of target recognition by calcium binding and unravels the role of cooperativity between the two calcium binding events in S100A12.

     
    more » « less
  2. Abstract

    The crystal structure of the NADH:quinone oxidoreductase PA1024 has been solved in complex with NAD+to 2.2 Å resolution. The nicotinamide C4 is 3.6 Å from the FMN N5 atom, with a suitable orientation for facile hydride transfer. NAD+binds in a folded conformation at the interface of the TIM‐barrel domain and the extended domain of the enzyme. Comparison of the enzyme‐NAD+structure with that of the ligand‐free enzyme revealed a different conformation of a short loop (75–86) that is part of the NAD+‐binding pocket. P78, P82, and P84 provide internal rigidity to the loop, whereas Q80 serves as an active site latch that secures the NAD+within the binding pocket. An interrupted helix consisting of two α‐helices connected by a small three‐residue loop binds the pyrophosphate moiety of NAD+. The adenine moiety of NAD+appears to π–π stack with Y261. Steric constraints between the adenosine ribose of NAD+, P78, and Q80, control the strict specificity of the enzyme for NADH. Charged residues do not play a role in the specificity of PA1024 for the NADH substrate.

     
    more » « less
  3. Abstract Serial x-ray crystallography can uncover binding events, and subsequent chemical conversions occurring during enzymatic reaction. Here, we reveal the structure, binding and cleavage of moxalactam antibiotic bound to L1 metallo-β-lactamase (MBL) from Stenotrophomonas maltophilia . Using time-resolved serial synchrotron crystallography, we show the time course of β-lactam hydrolysis and determine ten snapshots (20, 40, 60, 80, 100, 150, 300, 500, 2000 and 4000 ms) at 2.20 Å resolution. The reaction is initiated by laser pulse releasing Zn 2+ ions from a UV-labile photocage. Two metal ions bind to the active site, followed by binding of moxalactam and the intact β-lactam ring is observed for 100 ms after photolysis. Cleavage of β-lactam is detected at 150 ms and the ligand is significantly displaced. The reaction product adjusts its conformation reaching steady state at 2000 ms corresponding to the relaxed state of the enzyme. Only small changes are observed in the positions of Zn 2+ ions and the active site residues. Mechanistic details captured here can be generalized to other MBLs. 
    more » « less
  4. Protein tyrosine phosphatases (PTPs) are emerging drug targets for many diseases, including cancer, autoimmunity, and neurological disorders. A high degree of structural similarity between their catalytic domains, however, has hindered the development of selective pharmacological agents. Our previous research uncovered two unfunctionalized terpenoid inhibitors that selectively inhibit PTP1B over T-cell PTP (TCPTP), two PTPs with high sequence conservation. Here, we use molecular modeling, with supporting experimental validation, to study the molecular basis of this unusual selectivity. Molecular dynamics (MD) simulations suggest that PTP1B and TCPTP share a h-bond network that connects the active site to a distal allosteric pocket; this network stabilizes the closed conformation of the catalytically essential WPD loop, which it links to the L–11 loop and neighboring α3 and α7 helices on the other side of the catalytic domain. Terpenoid binding to either of two proximal C-terminal sites─an α site and a β site─can disrupt the allosteric network; however, binding to the α site forms a stable complex only in PTP1B. In TCPTP, two charged residues disfavor binding at the α site in favor of binding at the β site, which is conserved between the two proteins. Our findings thus indicate that minor amino acid differences at the poorly conserved α site enable selective binding, a property that might be enhanced with chemical elaboration, and illustrate more broadly how minor differences in the conservation of neighboring─yet functionally similar─allosteric sites can affect the selectivity of inhibitory scaffolds (e.g., fragments). 
    more » « less
  5. Abstract

    The N-(2-deoxy-d-erythro-pentofuranosyl)-urea DNA lesion forms following hydrolytic fragmentation of cis-5R,6S- and trans-5R,6R-dihydroxy-5,6-dihydrothymidine (thymine glycol, Tg) or from oxidation of 7,8-dihydro-8-oxo-deoxyguanosine (8-oxodG) and subsequent hydrolysis. It interconverts between α and β deoxyribose anomers. Synthetic oligodeoxynucleotides containing this adduct are efficiently incised by unedited (K242) and edited (R242) forms of the hNEIL1 glycosylase. The structure of a complex between the active site unedited mutant CΔ100 P2G hNEIL1 (K242) glycosylase and double-stranded (ds) DNA containing a urea lesion reveals a pre-cleavage intermediate, in which the Gly2 N-terminal amine forms a conjugate with the deoxyribose C1′ of the lesion, with the urea moiety remaining intact. This structure supports a proposed catalytic mechanism in which Glu3-mediated protonation of O4′ facilitates attack at deoxyribose C1′. The deoxyribose is in the ring-opened configuration with the O4′ oxygen protonated. The electron density of Lys242 suggests the ‘residue 242-in conformation’ associated with catalysis. This complex likely arises because the proton transfer steps involving Glu6 and Lys242 are hindered due to Glu6-mediated H-bonding with the Gly2 and the urea lesion. Consistent with crystallographic data, biochemical analyses show that the CΔ100 P2G hNEIL1 (K242) glycosylase exhibits a residual activity against urea-containing dsDNA.

     
    more » « less