skip to main content


Title: An operator-based approach to topological photonics
Abstract Recently, the study of topological structures in photonics has garnered significant interest, as these systems can realize robust, nonreciprocal chiral edge states and cavity-like confined states that have applications in both linear and nonlinear devices. However, current band theoretic approaches to understanding topology in photonic systems yield fundamental limitations on the classes of structures that can be studied. Here, we develop a theoretical framework for assessing a photonic structure’s topology directly from its effective Hamiltonian and position operators, as expressed in real space, and without the need to calculate the system’s Bloch eigenstates or band structure. Using this framework, we show that nontrivial topology, and associated boundary-localized chiral resonances, can manifest in photonic crystals with broken time-reversal symmetry that lack a complete band gap, a result that may have implications for new topological laser designs. Finally, we use our operator-based framework to develop a novel class of invariants for topology stemming from a system’s crystalline symmetries, which allows for the prediction of robust localized states for creating waveguides and cavities.  more » « less
Award ID(s):
2110398
NSF-PAR ID:
10394915
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Nanophotonics
Volume:
11
Issue:
21
ISSN:
2192-8614
Page Range / eLocation ID:
4765 to 4780
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Photonic topological insulators exhibit bulk-boundary correspondence, which requires that boundary-localized states appear at the interface formed between topologically distinct insulating materials. However, many topological photonic devices share a boundary with free space, which raises a subtle but critical problem as free space is gapless for photons above the light-line. Here, we use a local theory of topological materials to resolve bulk-boundary correspondence in heterostructures containing gapless materials and in radiative environments. In particular, we construct the heterostructure’s spectral localizer, a composite operator based on the system’s real-space description that provides a local marker for the system’s topology and a corresponding local measure of its topological protection; both quantities are independent of the material’s bulk band gap (or lack thereof). Moreover, we show that approximating radiative outcoupling as material absorption overestimates a heterostructure’s topological protection. As the spectral localizer is applicable to systems in any physical dimension and in any discrete symmetry class, our results show how to calculate topological invariants, quantify topological protection, and locate topological boundary-localized resonances in topological materials that interface with gapless media in general. 
    more » « less
  2. Over the last few years, crystalline topology has been used in photonic crystals to realize edge- and corner-localized states that enhance light-matter interactions for potential device applications. However, the band-theoretic approaches currently used to classify bulk topological crystalline phases cannot predict the existence, localization, or spectral isolation of any resulting boundary-localized modes. While interfaces between materials in different crystalline phases must have topological states at some energy, these states need not appear within the band gap, and thus may not be useful for applications. Here, we derive a class of local markers for identifying material topology due to crystalline symmetries, as well as a corresponding measure of topological protection. As our real-space-based approach is inherently local, it immediately reveals the existence and robustness of topological boundary-localized states, yielding a predictive framework for designing topological crystalline heterostructures. Beyond enabling the optimization of device geometries, we anticipate that our framework will also provide a route forward to deriving local markers for other classes of topology that are reliant upon spatial symmetries. 
    more » « less
  3. Abstract

    The chaotic evolution resulting from the interplay between topology and nonlinearity in photonic systems generally forbids the sustainability of optical currents. Here, we systematically explore the nonlinear evolution dynamics in topological photonic lattices within the framework of optical thermodynamics. By considering an archetypical two-dimensional Haldane photonic lattice, we discover several prethermal states beyond the topological phase transition point and a stable global equilibrium response, associated with a specific optical temperature and chemical potential. Along these lines, we provide a consistent thermodynamic methodology for both controlling and maximizing the unidirectional power flow in the topological edge states. This can be achieved by either employing cross-phase interactions between two subsystems or by exploiting self-heating effects in disordered or Floquet topological lattices. Our results indicate that photonic topological systems can in fact support robust photon transport processes even under the extreme complexity introduced by nonlinearity, an important feature for contemporary topological applications in photonics.

     
    more » « less
  4. Abstract

    Topological metals are conducting materials with gapless band structures and nontrivial edge-localized resonances. Their discovery has proven elusive because traditional topological classification methods require band gaps to define topological robustness. Inspired by recent theoretical developments that leverage techniques from the field ofC-algebras to identify topological metals, here, we directly observe topological phenomena in gapless acoustic crystals and realize a general experimental technique to demonstrate their topology. Specifically, we not only observe robust boundary-localized states in a topological acoustic metal, but also re-interpret a composite operator—mathematically derived from theK-theory of the problem—as a new Hamiltonian whose physical implementation allows us to directly observe a topological spectral flow and measure the topological invariants. Our observations and experimental protocols may offer insights for discovering topological behaviour across a wide array of artificial and natural materials that lack bulk band gaps.

     
    more » « less
  5. Topological phases feature robust edge states that are protected against the effects of defects and disorder. These phases have largely been studied in conservatively coupled systems, in which non-trivial topological invariants arise in the energy or frequency bands of a system. Here we show that, in dissipatively coupled systems, non-trivial topological invariants can emerge purely in a system’s dissipation. Using a highly scalable and easily reconfigurable time-multiplexed photonic resonator network, we experimentally demonstrate one- and two-dimensional lattices that host robust topological edge states with isolated dissipation rates, measure a dissipation spectrum that possesses a non-trivial topological invariant, and demonst rate topological protection of the network’s quality factor. The topologically non-trivial dissipation of our system exposes new opportunities to engineer dissipation in both classical and quantum systems. Moreover, our experimental platform’s straightforward scaling to higher dimensions and its ability to implement inhomogeneous, non-reciprocal and long range couplings may enable future work in the study of synthetic dimensions. 
    more » « less