Multi-Agent Path Finding (MAPF) is a well studied problem with many existing optimal algorithms capable of solving a wide variety of instances, each with its own strengths and weaknesses. While for some instances the fastest algorithm can be easily determined, not enough is known about their performance to predict the fastest algorithm for every MAPF instance, or what makes some instances more difficult than others. There is no clear answer for which features dominate the hardness of MAPF instances. In this work, we study how betweenness centrality affects the empirical difficulty of MAPF instances. To that end, we benchmark the largest and most complete optimal MAPF algorithm portfolio to date. We analyze the algorithms’ performance independently and as part of the portfolio, and discuss how betweenness centrality can be used to improve estimations of algorithm performance on a given instance of MAPF.
more »
« less
Betweenness Centrality in Multi-Agent Path Finding
Multi-Agent Path Finding (MAPF) is a well studied problem with many existing optimal algorithms capable of solving a wide variety of instances, each with its own strengths and weaknesses. While for some instances the fastest algorithm can be easily determined, not enough is known about their performance to predict the fastest algorithm for every MAPF instance, or what makes some instances more difficult than others. There is no clear answer for which features dominate the hardness of MAPF instances. In this work, we study how betweenness centrality affects the empirical difficulty of MAPF instances. To that end, we benchmark the largest and most complete optimal MAPF algorithm portfolio to date. We analyze the algorithms’ performance independently and as part of the portfolio, and discuss how betweenness centrality can be used to improve estimations of algorithm performance on a given instance of MAPF.
more »
« less
- Award ID(s):
- 1553726
- NSF-PAR ID:
- 10394919
- Date Published:
- Journal Name:
- International Conference on Autonomous Agents and Multiagent Systems
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Solving the Multi-Agent Path Finding (MAPF) problem optimally is known to be NP-Hard for both make-span and total arrival time minimization. While many algorithms have been developed to solve MAPF problems, there is no dominating optimal MAPF algorithm that works well in all types of problems and no standard guidelines for when to use which algorithm. In this work, we develop the deep convolutional network MAPFAST (Multi-Agent Path Finding Algorithm SelecTor), which takes a MAPF problem instance and attempts to select the fastest algorithm to use from a portfolio of algorithms. We improve the performance of our model by including single-agent shortest paths in the instance embedding given to our model and by utilizing supplemental loss functions in addition to a classification loss. We evaluate our model on a large and di- verse dataset of MAPF instances, showing that it outperforms all individual algorithms in its portfolio as well as the state-of-the-art optimal MAPF algorithm selector. We also provide an analysis of algorithm behavior in our dataset to gain a deeper understanding of optimal MAPF algorithms’ strengths and weaknesses to help other researchers leverage different heuristics in algorithm designs.more » « less
-
null (Ed.)Portfolio-based algorithm selection has seen tremendous practical success over the past two decades. This algorithm configuration procedure works by first selecting a portfolio of diverse algorithm parameter settings, and then, on a given problem instance, using an algorithm selector to choose a parameter setting from the portfolio with strong predicted performance. Oftentimes, both the portfolio and the algorithm selector are chosen using a training set of typical problem instances from the application domain at hand. In this paper, we provide the first provable guarantees for portfolio-based algorithm selection. We analyze how large the training set should be to ensure that the resulting algorithm selector's average performance over the training set is close to its future (expected) performance. This involves analyzing three key reasons why these two quantities may diverge: 1) the learning-theoretic complexity of the algorithm selector, 2) the size of the portfolio, and 3) the learning-theoretic complexity of the algorithm's performance as a function of its parameters. We introduce an end-to-end learning-theoretic analysis of the portfolio construction and algorithm selection together. We prove that if the portfolio is large, overfitting is inevitable, even with an extremely simple algorithm selector. With experiments, we illustrate a tradeoff exposed by our theoretical analysis: as we increase the portfolio size, we can hope to include a well-suited parameter setting for every possible problem instance, but it becomes impossible to avoid overfitting.more » « less
-
The 2D Multi-Agent Path Finding (MAPF) problem aims at finding collision-free paths for a number of agents, from a set of start locations to a set of goal locations in a known 2D environment. MAPF has been studied in theoretical computer science, robotics, and artificial intelligence over several decades, due to its importance for robot navigation. It is currently experiencing significant scientific progress due to its relevance for automated warehouses (such as those operated by Amazon) and other important application areas. In this paper, we demonstrate that some recently developed MAPF algorithms apply more broadly than currently believed in the MAPF research community. In particular, we describe the 3D Pipe Routing (PR) problem, which aims at placing collision-free pipes from given start locations to given goal locations in a known 3D environment. The MAPF and PR problems are similar: a solution to a MAPF instance is a set of blocked cells in x-y-t space, while a solution to the corresponding PR instance is a set of blocked cells in x-y-z space. We show how to use this similarity to apply several recently developed MAPF algorithms to the PR problem, and discuss their performance on real-world PR instances. This opens up a new direction of industrial relevance for the MAPF research community.more » « less
-
null (Ed.)The Multi-Agent Path Finding (MAPF) problem arises in many real-world applications, ranging from automated warehousing to multi-drone delivery. Solving the MAPF problem optimally is NP-hard, and existing optimal and bounded-suboptimal MAPF solvers thus usually do not scale to large MAPF instances. Greedy MAPF solvers scale to large MAPF instances, but their solution qualities are often bad. In this paper, we therefore propose a novel MAPF solver, Hierarchical Multi-Agent Path Planner (HMAPP), which creates a spatial hierarchy by partitioning the environment into multiple regions and decomposes a MAPF instance into smaller MAPF sub-instances for each region. For each sub-instance, it uses a bounded-suboptimal MAPF solver to solve it with good solution quality. Our experimental results show that HMAPP solves as large MAPF instances as greedy MAPF solvers while achieving better solution qualities on various maps.more » « less