skip to main content


Search for: All records

Award ID contains: 1553726

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Multi-Agent Path Finding (MAPF) is a well studied problem with many existing optimal algorithms capable of solving a wide variety of instances, each with its own strengths and weaknesses. While for some instances the fastest algorithm can be easily determined, not enough is known about their performance to predict the fastest algorithm for every MAPF instance, or what makes some instances more difficult than others. There is no clear answer for which features dominate the hardness of MAPF instances. In this work, we study how betweenness centrality affects the empirical difficulty of MAPF instances. To that end, we benchmark the largest and most complete optimal MAPF algorithm portfolio to date. We analyze the algorithms’ performance independently and as part of the portfolio, and discuss how betweenness centrality can be used to improve estimations of algorithm performance on a given instance of MAPF. 
    more » « less
  2. null (Ed.)
    Solving the Multi-Agent Path Finding (MAPF) problem optimally is known to be NP-Hard for both make-span and total arrival time minimization. While many algorithms have been developed to solve MAPF problems, there is no dominating optimal MAPF algorithm that works well in all types of problems and no standard guidelines for when to use which algorithm. In this work, we develop the deep convolutional network MAPFAST (Multi-Agent Path Finding Algorithm SelecTor), which takes a MAPF problem instance and attempts to select the fastest algorithm to use from a portfolio of algorithms. We improve the performance of our model by including single-agent shortest paths in the instance embedding given to our model and by utilizing supplemental loss functions in addition to a classification loss. We evaluate our model on a large and di- verse dataset of MAPF instances, showing that it outperforms all individual algorithms in its portfolio as well as the state-of-the-art optimal MAPF algorithm selector. We also provide an analysis of algorithm behavior in our dataset to gain a deeper understanding of optimal MAPF algorithms’ strengths and weaknesses to help other researchers leverage different heuristics in algorithm designs. 
    more » « less
  3. This paper defines the research area of Diversity-enhanced Autonomy in Robot Teams (DART), a novel paradigm for the creation and design of policies for multi-robot coordination. Although current approaches to multi-robot coordination have been successful in structured, well-understood environments, they have not been successful in unstructured, uncertain environments, such as disaster response. Although robot hardware has advanced significantly in the past decade, the way we solve multi-robot problems has not. Even with significant advances in the field of multi-robot systems, the same problem-solving paradigm has remained: assumptions are made to simplify the problem, and a solution is optimized for those assumptions and deployed to the entire team. This results in brittle solutions that prove incapable if the original assumptions are invalidated. This paper introduces a new multi-robot problem-solving paradigm which uses a diverse set of control policies that work together synergistically within the same team of robots. Such an approach will make multi-robot systems more robust in unstructured and uncertain environments, such as in disaster response, environmental monitoring, and military applications, and allow multi-robot systems to extend beyond the highly structured and highly controlled environments where they are successful today. 
    more » « less
  4. This paper defines the research area of Diversity-enhanced Autonomy in Robot Teams (DART), a novel paradigm for the creation and design of policies for multi-robot coordination. While current approaches to multi-robot coordination have been successful in structured, well understood environments, they have not been successful in unstructured, uncertain environments, such as disaster response. The reason for this is not due to limitations in robot hardware, which has advanced significantly in the past decade, but in how multi-robot problems are solved. Even with significant advances in the field of multi-robot systems, the same problem-solving paradigm has remained: assumptions are made to simplify the problem, and a solution is optimized for those assumptions and deployed on the entire team. This results in brittle solutions that prove incapable if the original assumptions are invalidated. This paper introduces a new multi-robot problem-solving paradigm which relies on diverse control policies to make multi-robot systems more resilient to uncertain environments. 
    more » « less