skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-latitude Observations of Inertial-range Turbulence by the Ulysses Spacecraft During the Solar Minimum of 1993–96
Abstract We have examined Ulysses magnetic field measurements for the years 1993 through 1996 as the spacecraft moved sunward from 5 au at high southern latitudes, passing through perihelion during the first fast-latitude scan to achieve high northern latitudes, and finally returning to 5 au. These years represent near-solar-minimum activity, providing a clear measure of high-latitude solar-wind turbulence. We apply a series of tests to the data, examining both the magnetic variance anisotropy and the underlying wavevector anisotropy, finding them to be consistent with past 1 au observations. The variance anisotropy depends upon both the thermal proton temperature parameter and the amplitude of the magnetic power spectrum, while the underlying wavevector anisotropy is dominated by the component perpendicular to the mean magnetic field. We also examine the amplitude of the magnetic power spectrum as well as the associated turbulent transport of energy to small scales that results in the heating of the thermal plasma. The measured turbulence is found to be stronger than that seen at low latitudes by the Voyager spacecraft as it traverses the distance from 1 to 5 au during the years approaching solar maximum. If the high- and low-latitude sources are comparable, this would indicate that while the heating processes are active in both regions, the turbulence has had less decay time in the transport of energy to small scales. Alternatively, it may also be that the high-latitude source is stronger.  more » « less
Award ID(s):
2005982
PAR ID:
10394925
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
927
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
43
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We examine Ulysses magnetic field observations from 1993 to 1996 as the spacecraft made its first fast-latitude scan from the southern to the northern hemisphere. Most of the observations we use are representative of high-latitude solar minimum conditions. We examine magnetic field power spectra characteristics of interplanetary turbulence at high frequencies, where the spectrum breaks from an inertial range into the ion dissipation range. The onset and spectral index of the dissipation spectrum are consistent with low-latitude observations at 1 au. Both ranges have a ratio of power in perpendicular magnetic field components to parallel components near 3. The power spectrum ratio test developed by Bieber et al. for single-spacecraft analyses that determines the underlying anisotropy of the wave vectors yields only marginally more energy associated with field-aligned wave vectors than perpendicular wave vectors when comparing the inertial and dissipation-range spectra. The lack of significant change in the anisotropies between the inertial and dissipation ranges contrasts strongly with the turbulence found typically for 1 au near-ecliptic observations, where significant differences in both anisotropies are observed. 
    more » « less
  2. The distribution of turbulence in the heliosphere remains a mystery, due to the complexity in not only modeling the turbulence transport equations but also identifying the drivers of turbulence that vary with time and spatial location. Beyond the ionization cavity (a few astronomical units (AU) from the Sun), the turbulence is driven predominantly by freshly created pickup ions (PUIs), in contrast to the driving by stream shear and compression. Understanding the source characteristics is necessary to refine turbulence transport models and interpret measurements of turbulence and solar wind temperature in the outer heliosphere. Using a recent latitude-dependent solar wind speed model and the ionization rate of neutral interstellar hydrogen (H), we investigate the temporal and spatial variation in the strength of low-frequency turbulence driven by PUIs from 1998 to 2020. We find that the driving rate is stronger during periods of high solar activity and at lower latitudes in the outer heliosphere. The driving rates for parallel and anti-parallel propagating (relative to the background magnetic field) slab turbulence have different spatial and latitude dependences. The calculated generation rate of turbulence by PUIs is an essential ingredient to investigate the latitude dependence of turbulence in the outer heliosphere, which is important to understand the heating of the distant solar wind and the modulation of cosmic rays. 
    more » « less
  3. Solar wind turbulence is anisotropic with respect to the mean magnetic field. Anisotropy leads to ambiguity when interpreting in situ turbulence observations in the solar wind because an apparent change in the measurements could be due to either the change of intrinsic turbulence properties or to a simple change of the spacecraft sampling direction. We demonstrate the ambiguity using the spectral index and magnetic compressibility in the inertial range observed by the Parker Solar Probe during its first seven orbits ranging from 0.1 to 0.6 au. To unravel the effects of the sampling direction, we assess whether the wave-vector anisotropy is consistent with a two-dimensional (2D) plus slab turbulence transport model and determine the fraction of power in the 2D versus slab component. Our results confirm that the 2D plus slab model is consistent with the data and the power ratio between 2D and slab components depends on radial distance, with the relative power in 2D fluctuations becoming smaller closer to the Sun. 
    more » « less
  4. Abstract We investigate a secondary proton beam instability coexisting with the ambient solar wind turbulence at 50R. Three-dimensional hybrid numerical simulations (particle ions and a quasi-neutralizing electron fluid) are carried out with the plasma parameters in the observed range. In the turbulent background, the particle distribution function, in particular the slope of the “bump-on-tail” responsible for the instability, is time-dependent and inhomogeneous. The presence of the turbulence substantially reduces the growth rate and saturation level of the instability. We derive magnetic power spectra from the observational data and perform a statistical analysis to evaluate the average turbulence intensity at 50R. This information is used to link the observed frequency spectrum to the wavenumber spectrum in the simulations. We verify that Taylor’s frozen-in hypothesis is valid for this purpose to a sufficient extent. To reproduce the typical magnetic power spectrum of the instability observed concurrently with the background turbulence, an artificial spacecraft probe is run through the simulation box. The thermal-ion instabilities are often seen as power elevations in the kinetic range of scales above an extrapolation of the turbulence spectrum from larger scales. We show that the elevated power in the simulations is much higher than the background level. Therefore, the turbulence at the average intensity does not obscure the secondary proton beam instability, as opposed to the solar wind at 1 au, in which the ambient turbulence typically obscures thermal-ion instabilities. 
    more » « less
  5. Abstract The Parker Solar Probe (PSP) and Wind spacecraft observed the same plasma flow during PSP encounter 15. The solar wind evolves from a sub-Alfvénic flow at 0.08 au to become modestly super-Alfvénic at 1 au. We study the radial evolution of the turbulence properties and deduce the spectral anisotropy based on the nearly incompressible (NI) MHD theory. We find that the spectral index of thez+spectrum remains unchanged (∼−1.53), while thezspectrum steepens, the index of which changes from −1.35 to −1.47. The fluctuating kinetic energy is on average greater than the fluctuating magnetic field energy in the sub-Alfvénic flow while smaller in the modestly super-Alfvénic flow. The NI MHD theory well interprets the observed Elsässer spectra. The contribution of 2D fluctuations is nonnegligible for the observedzfrequency spectra for both intervals. Particularly, the magnitudes of 2D and NI/slab fluctuations are comparable in the frequency domain for the modestly super-Alfvénic flow, resulting in a slightly concave shape ofzspectrum at 1 au. We show that, in the wavenumber domain, the power ratio of the observed forward NI/slab and 2D fluctuations is  ∼15 at 0.08 au, while it decreases to  ∼3 at 1 au, suggesting the growing significance of the 2D fluctuations as the turbulence evolves in low Mach number solar wind. 
    more » « less