skip to main content


Search for: All records

Award ID contains: 2005982

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We revisit the question of how the unstable scattering of interstellar pickup ions (PUIs) may drive turbulence in the outer solar wind and why the energy released into fluctuations by this scattering appears to be significantly less than the standard bispherical prediction. We suggest that energization of the newly picked-up ions by the ambient turbulence during the scattering process can result in a more spherical distribution of PUIs and reduce the generated fluctuation energy to a level consistent with the observations of turbulent intensities and core solar wind heating. This scenario implies the operation of a self-regulation mechanism that maintains the observed conditions of turbulence and heating in the PUI-dominated solar wind.

     
    more » « less
  2. Abstract

    Interstellar neutral atoms enter the heliosphere at a relatively slow speed corresponding to the motion of the Sun through the local interstellar medium, which is approximately 25 km s−1. Neutral hydrogen atoms enter from the approximate location of the Voyager spacecraft and are eventually ionized primarily by collision with thermal solar wind ions. An earlier analysis by Hollick et al. examined low-frequency magnetic waves observed by the Voyager spacecraft from launch through 1990 that are thought to arise from the scattering of newborn interstellar pickup H+and He+. We report an analysis of Voyager 1 observations in 1991, which is the last year of high-resolution magnetic field data that are publicly available, and find 70 examples of low-frequency waves with the characteristics that suggest excitation by pickup H+and 10 examples of waves consistent with excitation by pickup He+. We find a particularly dense cluster of observations at the tail end of what is thought to be a Merged Interaction Region (MIR) that was previously studied by Burlaga & Ness using Voyager 2 observations. This is not unexpected if the MIR is followed by a large rarefaction region, as they tend to be regions of reduced turbulence levels that permit the growth of the waves over the long time periods that are generally required of this instability.

     
    more » « less
  3. Abstract

    Using high-resolution data from Solar Orbiter, we investigate the plasma conditions necessary for the proton temperature-anisotropy-driven mirror-mode and oblique firehose instabilities to occur in the solar wind. We find that the unstable plasma exhibits dependencies on the angle between the direction of the magnetic field and the bulk solar wind velocity which cannot be explained by the double-adiabatic expansion of the solar wind alone. The angle dependencies suggest that perpendicular heating in Alfvénic wind may be responsible. We quantify the occurrence rate of the two instabilities as a function of the length of unstable intervals as they are convected over the spacecraft. This analysis indicates that mirror-mode and oblique firehose instabilities require a spatial interval of length greater than 2–3 unstable wavelengths in order to relax the plasma into a marginally stable state and thus closer to thermodynamic equilibrium in the solar wind. Our analysis suggests that the conditions for these instabilities to act effectively vary locally on scales much shorter than the correlation length of solar wind turbulence.

     
    more » « less
  4. At kinetic scales in the solar wind, instabilities transfer energy from particles to fluctuations in the electromagnetic fields while restoring plasma conditions towards thermodynamic equilibrium. We investigate the interplay between background turbulent fluctuations at the small-scale end of the inertial range and kinetic instabilities acting to reduce proton temperature anisotropy. We analyse in situ solar wind observations from the Solar Orbiter mission to develop a measure for variability in the magnetic field direction. We find that non-equilibrium conditions sufficient to cause micro-instabilities in the plasma coincide with elevated levels of variability. We show that our measure for the fluctuations in the magnetic field is non-ergodic in regions unstable to the growth of temperature anisotropy-driven instabilities. We conclude that the competition between the action of the turbulence and the instabilities plays a significant role in the regulation of the proton-scale energetics of the solar wind. This competition depends not only on the variability of the magnetic field but also on the spatial persistence of the plasma in non-equilibrium conditions.

     
    more » « less
  5. Abstract We perform a statistical analysis of observed magnetic spectra in the solar wind at 1 au with localized power elevations above the level of the ambient turbulent fluctuations. We show that the elevations are seen only when the intensity of the ambient fluctuations is sufficiently low. Assuming that the spectral elevations are caused by thermal-ion instabilities, this suggests that on average the effect of the solar wind background is strong enough to suppress the instability or obscure it or both. We then carry out nonlinear numerical simulations with particle ions and an electron fluid to model a thermal-ion instability coexisting with an ambient turbulence. The parameters of the simulation are taken from a known solar wind interval where an instability was assumed to exist based on the linear theory and a bi-Maxwellian fit of the observed distribution with core and secondary-beam protons. The numerical model closely matches the position of the observed spectral elevation in the wavenumber space. This confirms that the thermal-ion instability is responsible for the elevation. At the same time, the magnitude of the elevation turns out to be smaller than in the real solar wind. When higher intensity of the turbulence is used in the simulation, which is typical of solar wind in general, the power elevation is no longer seen. This is in agreement with the reduced observability of the elevations at higher intensities. However, the simulations show that the turbulence does not simply obscure the instability but also lowers its saturation level. 
    more » « less
  6. Abstract We have examined Ulysses magnetic field measurements for the years 1993 through 1996 as the spacecraft moved sunward from 5 au at high southern latitudes, passing through perihelion during the first fast-latitude scan to achieve high northern latitudes, and finally returning to 5 au. These years represent near-solar-minimum activity, providing a clear measure of high-latitude solar-wind turbulence. We apply a series of tests to the data, examining both the magnetic variance anisotropy and the underlying wavevector anisotropy, finding them to be consistent with past 1 au observations. The variance anisotropy depends upon both the thermal proton temperature parameter and the amplitude of the magnetic power spectrum, while the underlying wavevector anisotropy is dominated by the component perpendicular to the mean magnetic field. We also examine the amplitude of the magnetic power spectrum as well as the associated turbulent transport of energy to small scales that results in the heating of the thermal plasma. The measured turbulence is found to be stronger than that seen at low latitudes by the Voyager spacecraft as it traverses the distance from 1 to 5 au during the years approaching solar maximum. If the high- and low-latitude sources are comparable, this would indicate that while the heating processes are active in both regions, the turbulence has had less decay time in the transport of energy to small scales. Alternatively, it may also be that the high-latitude source is stronger. 
    more » « less
  7. Abstract We consider the firehose instability coexisting with the omnipresent ambient solar wind turbulence. The characteristic temporal and spatial scales of the turbulence are comparable to those of the instability. Therefore, turbulence may violate the common assumption of a uniform and stationary background used to describe instabilities and make the properties of the instabilities different. To investigate this effect, we perform three-dimensional hybrid simulations with particle-in-cell ions and a quasi-neutralizing electron fluid. We find that the turbulence significantly reduces the growth rates and saturation levels of both instabilities. Comparing the cases with and without turbulence, the former results in a higher temperature anisotropy in the asymptotic marginally stable state at large times. In the former case, the distribution function averaged over the simulation box is also closer to the initial one. 
    more » « less
  8. Abstract Three-dimensional hybrid kinetic simulations are conducted with particle protons and warm fluid electrons. Alfvénic fluctuations initialized at large scales and with wavevectors that are highly oblique with respect to the background magnetic field evolve into a turbulent energy cascade that dissipates at proton kinetic scales. Accompanying the proton scales is a spectral magnetic helicity signature with a peak in magnitude. A series of simulation runs are made with different large-scale cross helicity and different initial fluctuation phases and wavevector configurations. From the simulations a so-called total magnetic helicity peak is evaluated by summing contributions at a wavenumber perpendicular to the background magnetic field. The total is then compared with the reduced magnetic helicity calculated along spacecraft-like trajectories through the simulation box. The reduced combines the helicity from different perpendicular wavenumbers and depends on the sampling direction. The total is then the better physical quantity to characterize the turbulence. On average the ratio of reduced to total is 0.45. The total magnetic helicity and the reduced magnetic helicity show intrinsic variability based on initial fluctuation conditions. This variability can contribute to the scatter found in the observed distribution of solar wind reduced magnetic helicity as a function of cross helicity. 
    more » « less