Abstract Models of nonlinear quantum computation based on deterministic positive trace‐preserving (PTP) channels and evolution equations are investigated. The models are defined in any finite Hilbert space, but the main results are for dimension . For every normalizable linear or nonlinear positive map ϕ on bounded linear operatorsX, there is an associated normalized PTP channel . Normalized PTP channels include unitary mean field theories, such as the Gross–Pitaevskii equation for interacting bosons, as well as models of linear and nonlinear dissipation. They classify into four types, yielding three distinct forms of nonlinearity whose computational power are explored. In the qubit case, these channels support Bloch ball torsion and other distortions studied previously, where it has been shown that such nonlinearity can be used to increase the separation between a pair of close qubit states, suggesting an exponential speedup for state discrimination. Building on this idea, the authors argue that this operation can be made robust to noise by using dissipation to induce a bifurcation to a novel phase where a pair of attracting fixed points create an intrinsically fault‐tolerant nonlinear state discriminator.
more »
« less
Toward quantum electronic-photonic systems-on-chip: a monolithic source of quantum-correlated photons with integrated frequency locking electronics and pump rejection
We demonstrate a CMOS electronic-photonic photon-pair source with integrated feedback-controlled frequency locking,>80 dB on-chip pump rejection, and signal/idler de-multiplexing, achieving a CAR of ≃5 at ≃40 ccps pair rate.
more »
« less
- Award ID(s):
- 1842692
- PAR ID:
- 10394940
- Date Published:
- Journal Name:
- Conference on Lasers and Electro-Optics
- Page Range / eLocation ID:
- SM3N.2
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The ability to cool quantum gases into the quantum degenerate realm has opened up possibilities for an extreme level of quantum-state control. In this paper, we investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose–Einstein condensate by the periodic modulation of the two-bodys-wave scattering length. This shows a capability to selectively amplify quantum fluctuations with a predetermined momentum, where the momentum value can be spectroscopically tuned. A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal in nonlinear optics. For this reason, it may be anticipated that the evolution will generate a ‘squeezed’ matter-wave state in the quasiparticle mode on resonance with the modulation frequency. Our model and analysis is motivated by a recent experiment by Clarket althat observed a time-of-flight pattern similar to an exploding firework (Clarket al2017Nature551356–9). Since the drive is a highly coherent process, we interpret the observed firework patterns as arising from a monotonic growth in the two-body correlation amplitude, so that the jets should contain correlated atom pairs with nearly equal and opposite momenta. We propose a potential future experiment based on applying Ramsey interferometry to experimentally probe these pair correlations.more » « less
-
Abstract Low-mass galaxy pair fractions are understudied, and it is unclear whether low-mass pair fractions evolve in the same way as more massive systems over cosmic time. In the era of JWST, Roman, and Rubin, selecting galaxy pairs in a self-consistent way will be critical to connect observed pair fractions to cosmological merger rates across all mass scales and redshifts. Utilizing the Illustris TNG100 simulation, we create a sample of physically associated low-mass (108<M*< 5 × 109M⊙) and high-mass (5 × 109<M*< 1011M⊙) pairs betweenz= 0 and 4.2. The low-mass pair fraction increases fromz= 0 to 2.5, while the high-mass pair fraction peaks atz= 0 and is constant or slightly decreasing atz> 1. Atz= 0 the low-mass major (1:4 mass ratio) pair fraction is 4× lower than high-mass pairs, consistent with findings for cosmological merger rates. We show that separation limits that vary with the mass and redshift of the system, such as scaling by the virial radius of the host halo (rsep< 1Rvir), are critical for recovering pair fraction differences between low-mass and high-mass systems. Alternatively, static physical separation limits applied equivalently to all galaxy pairs do not recover the differences between low- and high-mass pair fractions, even up to separations of 300 kpc. Finally, we place isolated mass analogs of Local Group galaxy pairs, i.e., Milky Way (MW)–M31, MW–LMC, LMC–SMC, in a cosmological context, showing that isolated analogs of LMC–SMC-mass pairs and low-separation (<50 kpc) MW–LMC-mass pairs are 2–3× more common atz≳ 2–3.more » « less
-
Abstract BackgroundThe Vaccine Ontology (VO) is a biomedical ontology that standardizes vaccine annotation. Errors in VO will affect a multitude of applications that it is being used in. Quality assurance of VO is imperative to ensure that it provides accurate domain knowledge to these downstream tasks. Manual review to identify and fix quality issues (such as missing hierarchical is-a relations) is challenging given the complexity of the ontology. Automated approaches are highly desirable to facilitate the quality assurance of VO. MethodsWe developed an automated lexical approach that identifies potentially missingis-arelations in VO. First, we construct two types of VO concept-pairs: (1) linked; and (2) unlinked. Each concept-pair further derives an Acquired Term Pair (ATP) based on their lexical features. If the same ATP is obtained by a linked concept-pair and an unlinked concept-pair, this is considered to indicate a potentially missingis-arelation between the unlinked pair of concepts. ResultsApplying this approach on the 1.1.192 version of VO, we were able to identify 232 potentially missingis-arelations. A manual review by a VO domain expert on a random sample of 70 potentially missingis-arelations revealed that 65 of the cases were valid missingis-arelations in VO (a precision of 92.86%). ConclusionsThe results indicate that our approach is highly effective in identifying missingis-arelation in VO.more » « less
-
Abstract It was recently proposed that the electric field oscillation as a result of self-consistente±pair production may be the source of coherent radio emission from pulsars. Direct particle-in-cell simulations of this process have shown that the screening of the parallel electric field by this pair cascade manifests as a limit cycle, as the parallel electric field is recurrently induced when pairs produced in the cascade escape from the gap region. In this work, we develop a simplified time-dependent kinetic model ofe±pair cascades in pulsar magnetospheres that can reproduce the limit-cycle behavior of pair production and electric field screening. This model includes the effects of a magnetospheric current, the escape ofe±, as well as the dynamic dependence of pair production rate on the plasma density and energy. Using this simple theoretical model, we show that the power spectrum of electric field oscillations averaged over many limit cycles is compatible with the observed pulsar radio spectrum.more » « less
An official website of the United States government

