Derivatives are key to numerous science, engineering, and machine learning applications. While existing tools generate derivatives of programs in a single language, modern parallel applications combine a set of frameworks and languages to leverage available performance and function in an evolving hardware landscape.
We propose a scheme for differentiating arbitrary DAG-based parallelism that preserves scalability and efficiency, implemented into the LLVM-based Enzyme automatic differentiation framework. By integrating with a full-fledged compiler backend, Enzyme can differentiate numerous parallel frameworks and directly control code generation. Combined with its ability to differentiate any LLVM-based language, this flexibility permits Enzyme to leverage the compiler tool chain for parallel and differentiation-specific optimizations.
We differentiate nine distinct versions of the LULESH and miniBUDE applications, written in different programming languages (C++, Julia) and parallel frameworks (OpenMP, MPI, RAJA, Julia tasks, MPI.jl), demonstrating similar scalability to the original program. On benchmarks with 64 threads or nodes, we find a differentiation overhead of 3.4 - 6.8× on C++ and 5.4 - 12.5× on Julia.
more »
« less
UPIR: Toward the Design of Unified Parallel Intermediate Representation for Parallel Programming Models
The complexity of heterogeneous computing architectures, as well as the demand for productive and portable parallel application development, have driven the evolution of parallel programming models to become more comprehensive and complex than before. Enhancing the conventional compilation technologies and software infrastructure to be parallelism-aware has become one of the main goals of recent compiler development. In this work, we propose the design of unified parallel intermediate representation (UPIR) for multiple parallel programming models and for enabling unified compiler transformation for the models. UPIR specifies three commonly used parallelism patterns (SPMD, data and task parallelism), data attributes and explicit data movement and memory management, and synchronization operations used in parallel programming. We demonstrate UPIR via a prototype implementation in the ROSE compiler for unifying IR for both OpenMP and OpenACC and in both C/C++ and Fortran, for unifying the transformation that lowers both OpenMP and OpenACC code to LLVM runtime, and for exporting UPIR to LLVM MLIR dialect. The fully extended paper of this abstract can be found from https://arxiv.org/abs/2209.10643.
more »
« less
- Award ID(s):
- 2015254
- PAR ID:
- 10394962
- Date Published:
- Journal Name:
- PACT '22: Proceedings of the International Conference on Parallel Architectures and Compilation Techniques
- Page Range / eLocation ID:
- 530 to 531
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we provide comparison of language features and runtime systems of commonly used threading parallel programming models for high performance computing, including OpenMP, Intel Cilk Plus, Intel TBB, OpenACC, Nvidia CUDA, OpenCL, C++11 and PThreads. We then report our performance comparison of OpenMP, Cilk Plus and C++11 for data and task parallelism on CPU using benchmarks. The results show that the performance varies with respect to factors such as runtime scheduling strategies, overhead of enabling parallelism and synchronization, load balancing and uniformity of task workload among threads in applications. Our study summarizes and categorizes the latest development of threading programming APIs for supporting existing and emerging computer architectures, and provides tables that compare all features of different APIs. It could be used as a guide for users to choose the APIs for their applications according to their features, interface and performance reported.more » « less
-
Manually writing parallel programs is difficult and error-prone. Automatic parallelization could address this issue, but profitability can be limited by not having facts known only to the programmer. A parallelizing compiler that collaborates with the programmer can increase the coverage and performance of parallelization while reducing the errors and overhead associated with manual parallelization. Unlike collaboration involving analysis tools that report program properties or make parallelization suggestions to the programmer, decompiler-based collaboration could leverage the strength of existing parallelizing compilers to provide programmers with a natural compiler-parallelized starting point for further parallelization or refinement. Despite this potential, existing decompilers fail to do this because they do not generate portable parallel source code compatible with any compiler of the source language. This paper presents SPLENDID, an LLVM-IR to C/OpenMP decompiler that enables collaborative parallelization by producing standard parallel OpenMP code. Using published manual parallelization of the PolyBench benchmark suite as a reference, SPLENDID's collaborative approach produces programs twice as fast as either Polly-based automatic parallelization or manual parallelization alone. SPLENDID's portable parallel code is also more natural than that from existing decompilers, obtaining a 39x higher average BLEU score.more » « less
-
OpenMP is one of the most popular programming models to exploit node-level parallelism of supercomputers. Many researchers are interested in developing OpenMP compilers or extending existing standard for new capabilities. However, there is a lack of training resources for researchers who are involved in the compiler and language development around OpenMP, making learning curve in this area steep. In this paper, we introduce an ongoing effort, FreeCompilerCamp.org, a free and open online learning platform aimed to train researchers to quickly develop OpenMP compilers. The platform is built on top of Play-With-Docker, a docker playground for users to conduct experiments in an online terminal sandbox. It provides a live training website that is set up on cloud, so anyone with internet access and a web browser will be able to take the training. It also enables developers with relevant skills to contribute new tutorials. The entire training system is open-source and can be deployed on a private server, workstation or even laptop for personal use. We have created some initial tutorials to train users to learn how to extend the Clang/LLVM and ROSE compiler to support new OpenMP features. We welcome anyone to try out our system, give us feedback, contribute new training courses, or enhance the training platform to make it an effective learning resource for the HPC community.more » « less
-
Modern programming languages offer special syntax and semantics for logical fork-join parallelism in the form of parallel loops, allowing them to be nested, e.g., a parallel loop within another parallel loop. This expressiveness comes at a price, however: on modern multicore systems, realizing logical parallelism results in overheads due to the creation and management of parallel tasks, which can wipe out the benefits of parallelism. Today, we expect application programmers to cope with it by manually tuning and optimizing their code. Such tuning requires programmers to reason about architectural factors hidden behind layers of software abstractions, such as task scheduling and load balancing. Managing these factors is particularly challenging when workloads are irregular because their performance is input-sensitive. This paper presents HBC, the first compiler that translates C/C++ programs with high-level, fork-join constructs (e.g., OpenMP) to binaries capable of automatically controlling the cost of parallelism and dealing with irregular, input-sensitive workloads. The basis of our approach is Heartbeat Scheduling, a recent proposal for automatic granularity control, which is backed by formal guarantees on performance. HBC binaries outperform OpenMP binaries for workloads for which even entirely manual solutions struggle to find the right balance between parallelism and its costs.more » « less