skip to main content


Title: Focal stack based image forgery localization

Image security is becoming an increasingly important issue due to advances in deep learning based image manipulations, such as deep image inpainting and deepfakes. There has been considerable work to date on detecting such image manipulations using improved algorithms, with little attention paid to the possible role that hardware advances may have for improving security. We propose to use a focal stack camera as a novel secure imaging device, to the best of our knowledge, that facilitates localizing modified regions in manipulated images. We show that applying convolutional neural network detection methods to focal stack images achieves significantly better detection accuracy compared to single image based forgery detection. This work demonstrates that focal stack images could be used as a novel secure image file format and opens up a new direction for secure imaging.

 
more » « less
Award ID(s):
1838179
NSF-PAR ID:
10394999
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Applied Optics
Volume:
61
Issue:
14
ISSN:
1559-128X; APOPAI
Format(s):
Medium: X Size: Article No. 4030
Size(s):
Article No. 4030
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract— Recent advances show the wide-ranging applications of machine learning for solving multi-disciplinary problems in cancer cell growth detection, modeling cancer growths and treatments, etc. There is growing interests among the faculty and students at Clayton State University to study the applications of machine learning for medical imaging and propose new algorithms based on a recently funded NSF grant proposal in medical imaging, skin cancer detection, and associated smartphone apps and a web-based user-friendly diagnosis interface. We tested many available open-source ML algorithm-based software sets in Python as applied to medical image data processing, and modeling used to predict cancer growths and treatments. We study the use of ML concepts that promote efficient, accurate, secure computation over medical images, identifying and classifying cancer cells, and modeling the cancer cell growths. In this collaborative project with another university, we follow a holistic approach to data analysis leading to more efficient cancer detection based upon both cell analysis and image recognition. Here, we compare ML based software methods and analyze their detection accuracy. In addition, we acquire publicly available data of cancer cell image files and analyze using deep learning algorithms to detect benign and suspicious image samples. We apply the current pattern matching algorithms and study the available data with possible diagnosis of cancer types. 
    more » « less
  2. Traditional fingerprint authentication requires the acquisition of data through touch-based specialized sensors. However, due to many hygienic concerns including the global spread of the COVID virus through contact with a surface has led to an increased interest in contactless fingerprint image acquisition methods. Matching fingerprints acquired using contactless imaging against contact-based images brings up the problem of performing cross modal fingerprint matching for identity verification. In this paper, we propose a cost-effective, highly accurate and secure end-to-end contactless fingerprint recognition solution. The proposed framework first segments the finger region from an image scan of the hand using a mobile phone camera. For this purpose, we developed a cross-platform mobile application for fingerprint enrollment, verification, and authentication keeping security, robustness, and accessibility in mind. The segmented finger images go through fingerprint enhancement to highlight discriminative ridge-based features. A novel deep convolutional network is proposed to learn a representation from the enhanced images based on the optimization of various losses. The proposed algorithms for each stage are evaluated on multiple publicly available contactless databases. Our matching accuracy and the associated security employed in the system establishes the strength of the proposed solution framework. 
    more » « less
  3. null (Ed.)
    The recent advances in algorithmic photo-editing and the vulnerability of hospitals to cyberattacks raises the concern about the tampering of medical images. This paper introduces a new large scale dataset of tampered Computed Tomography (CT) scans generated by different methods, LuNoTim-CT dataset, which can serve as the most comprehensive testbed for comparative studies of data security in healthcare. We further propose a deep learning-based framework, ConnectionNet, to automatically detect if a medical image is tampered. The proposed ConnectionNet is able to handle small tampered regions and achieves promising results and can be used as the baseline for studies of medical image tampering detection. 
    more » « less
  4. Confocal microscopy is a standard approach for obtaining volumetric images of a sample with high axial and lateral resolution, especially when dealing with scattering samples. Unfortunately, a confocal microscope is quite expensive compared to traditional microscopes. In addition, the point scanning in confocal microscopy leads to slow imaging speed and photobleaching due to the high dose of laser energy. In this paper, we demonstrate how the advances in machine learning can be exploited to teach a traditional wide-field microscope, one that’s available in every lab, into producing 3D volumetric images like a confocal microscope. The key idea is to obtain multiple images with different focus settings using a wide-field microscope and use a 3D generative adversarial network (GAN) based neural network to learn the mapping between the blurry low-contrast image stacks obtained using a wide-field microscope and the sharp, high-contrast image stacks obtained using a confocal microscope. After training the network with widefield-confocal stack pairs, the network can reliably and accurately reconstruct 3D volumetric images that rival confocal images in terms of its lateral resolution, z-sectioning and image contrast. Our experimental results demonstrate generalization ability to handle unseen data, stability in the reconstruction results, high spatial resolution even when imaging thick (∼40 microns) highly-scattering samples. We believe that such learning-based microscopes have the potential to bring confocal imaging quality to every lab that has a wide-field microscope.

     
    more » « less
  5. We report the development of a multichannel microscopy for whole‐slide multiplane, multispectral and phase imaging. We use trinocular heads to split the beam path into 6 independent channels and employ a camera array for parallel data acquisition, achieving a maximum data throughput of approximately 1 gigapixel per second. To perform single‐frame rapid autofocusing, we place 2 near‐infrared light‐emitting diodes (LEDs) at the back focal plane of the condenser lens to illuminate the sample from 2 different incident angles. A hot mirror is used to direct the near‐infrared light to an autofocusing camera. For multiplane whole‐slide imaging (WSI), we acquire 6 different focal planes of a thick specimen simultaneously. For multispectral WSI, we relay the 6 independent image planes to the same focal position and simultaneously acquire information at 6 spectral bands. For whole‐slide phase imaging, we acquire images at 3 focal positions simultaneously and use the transport‐of‐intensity equation to recover the phase information. We also provide an open‐source design to further increase the number of channels from 6 to 15. The reported platform provides a simple solution for multiplexed fluorescence imaging and multimodal WSI. Acquiring an instant focal stack without z‐scanning may also enable fast 3‐dimensional dynamic tracking of various biological samples.

     
    more » « less