Increasingly, geographic approaches to assessing the risk of tick‐borne diseases are being used to inform public health decision‐making and surveillance efforts. The distributions of key tick species of medical importance are often modeled as a function of environmental factors, using niche modeling approaches to capture habitat suitability. However, this is often disconnected from the potential distribution of key host species, which may play an important role in the actual transmission cycle and risk potential in expanding tick‐borne disease risk. Using species distribution modeling, we explore the potential geographic range of
- Award ID(s):
- 1920946
- NSF-PAR ID:
- 10395082
- Date Published:
- Journal Name:
- PeerJ
- Volume:
- 10
- ISSN:
- 2167-8359
- Page Range / eLocation ID:
- e13279
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Oryzomys palustris , the marsh rice rat, which has been implicated as a potential reservoir host ofRickettsia parkeri , a pathogen transmitted by the Gulf Coast tick (Amblyomma maculatum ) in the southeastern United States. Due to recent taxonomic reclassification ofO. palustris subspecies, we reclassified geolocated collections records into the newer clade definitions. We modeled the distribution of the two updated clades in the region, establishing for the first time, range maps and distributions of these two clades. The predicted distribution of both clades indicates a largely Gulf and southeastern coastal distribution. Estimated suitable habitat forO. palustris extends into the southern portion of the Mid‐Atlantic region, with a discontinuous, limited area of suitability in coastal California. Broader distribution predictions suggest potential incursions along the Mississippi River. We found considerable overlap of predictedO. palustris ranges with the distribution ofA. maculatum , indicating the potential need for extended surveillance efforts in those overlapping areas and attention to the role of hosts in transmission cycles. -
null (Ed.)Ticks rank high among arthropod vectors in terms of numbers of infectious agents that they transmit to humans, including Lyme disease, Rocky Mountain spotted fever, Colorado tick fever, human monocytic ehrlichiosis, tularemia, and human granulocytic anaplasmosis. Increasing temperature is suspected to affect tick biting rates and pathogen developmental rates, thereby potentially increasing risk for disease incidence. Tick distributions respond to climate change, but how their geographic ranges will shift in future decades and how those shifts may translate into changes in disease incidence remain unclear. In this study, we have assembled correlative ecological niche models for eight tick species of medical or veterinary importance in North America (Ixodes scapularis, I. pacificus, I. cookei, Dermacentor variabilis, D. andersoni, Amblyomma americanum, A. maculatum, and Rhipicephalus sanguineus), assessing the distributional potential of each under both present and future climatic conditions. Our goal was to assess whether and how species’ distributions will likely shift in coming decades in response to climate change. We interpret these patterns in terms of likely implications for tick-associated diseases in North America.more » « less
-
Becker, Daniel (Ed.)
The states of Kansas and Oklahoma, in the central Great Plains, lie at the western periphery of the geographic distributions of several tick species. As the focus of most research on ticks and tick-borne diseases has been on Lyme disease which commonly occurs in areas to the north and east, the ticks of this region have seen little research attention. Here, we report on the phenology and activity patterns shown by tick species observed at 10 sites across the two states and explore factors associated with abundance of all and life specific individuals of the dominant species. Ticks were collected in 2020–2022 using dragging, flagging and carbon-dioxide trapping techniques, designed to detect questing ticks. The dominant species was
A .americanum (24098, 97%) followed byDermacentor variabilis (370, 2%),D .albipictus (271, 1%),Ixodes scapularis (91, <1%)and A .maculatum (38, <1%).Amblyomma americanum ,A .maculatum and D .variabilis were active in Spring and Summer, whileD .albipictus and I .scapularis were active in Fall and Winter. Factors associated with numbers of individuals ofA .americanum included day of year, habitat, and latitude. Similar associations were observed when abundance was examined by life-stage. Overall, the picture is one of broadly distributed tick species that shows seasonal limitations in the timing of their questing activity. -
Abstract Background We conducted a large-scale, passive regional survey of ticks associated with wildlife of the eastern United States. Our primary goals were to better assess the current geographical distribution of exotic
Haemaphysalis longicornis and to identify potential wild mammalian and avian host species. However, this large-scale survey also provided valuable information regarding the distribution and host associations for many other important tick species that utilize wildlife as hosts.Methods Ticks were opportunistically collected by cooperating state and federal wildlife agencies. All ticks were placed in the supplied vials and host information was recorded, including host species, age, sex, examination date, location (at least county and state), and estimated tick burden. All ticks were identified to species using morphology, and suspect
H. longicornis were confirmed through molecular techniques.Results In total, 1940 hosts were examined from across 369 counties from 23 states in the eastern USA. From these submissions, 20,626 ticks were collected and identified belonging to 11 different species. Our passive surveillance efforts detected exotic
H. longicornis from nine host species from eight states. Notably, some of the earliest detections ofH. longicornis in the USA were collected from wildlife through this passive surveillance network. In addition, numerous new county reports were generated forAmblyomma americanum ,Amblyomma maculatum ,Dermacentor albipictus ,Dermacentor variabilis , andIxodes scapularis. Conclusions This study provided data on ticks collected from animals from 23 different states in the eastern USA between 2010 and 2021, with the primary goal of better characterizing the distribution and host associations of the exotic tick
H. longicornis; however, new distribution data on tick species of veterinary or medical importance were also obtained. Collectively, our passive surveillance has detected numerous new county reports forH. longicornis as well asI. scapularis. Our study utilizing passive wildlife surveillance for ticks across the eastern USA is an effective method for surveying a diversity of wildlife host species, allowing us to better collect data on current tick distributions relevant to human and animal health. -
Abstract Ticks are blood-feeding arthropods responsible for the transmission of disease-causing pathogens to a wide range of vertebrate hosts, including livestock and humans. Tick-borne diseases have been implicated in significant economic losses to livestock production, and this threat will increase as these obligate parasites widen their geographical ranges. Similar to other ectotherms, thermal stress due to changing global temperatures has been shown to influence tick survival and distribution. However, studies on the influence of extreme temperatures in ticks have focused on advanced, mobile stages, ignoring immobile stages that cannot move to more favorable microhabitats. In this study, low- and high-temperature regimens were assessed in relation to egg viability for hard tick species—Amblyomma maculatum (Gulf Coast tick), Ixodes scapularis (black-legged tick), Dermacentor variabilis (American dog tick), and Rhipicephalus sanguineus (Brown dog tick). Tick eggs exposed early in development (freshly laid during early embryo development) were significantly more susceptible to thermal stress when compared with those exposed later in development (late embryo development denoted by a fecal spot). Based on our studies, differences in egg hatching success among treatments were greater than in hatching success when comparing species. Lastly, there was evidence of extreme thermal exposure significantly altering the hatching times of tick eggs for specific treatments. These results provide insights into the critical period for tick egg viability in relation to thermal exposure and tick survival associated with stress and climate change.