Young planets provide a window into the early stages and evolution of planetary systems. Ideal planets for such research are in coeval associations, where the parent population can precisely determine their ages. We describe a young association (MELANGE-3) in the Kepler field, which harbors two transiting planetary systems (KOI-3876 and Kepler-970). We identify MELANGE-3 by searching for kinematic and spatial overdensities around Kepler planet hosts with high levels of lithium. To determine the age and membership of MELANGE-3, we combine new high-resolution spectra with archival light curves, velocities, and astrometry of stars near KOI-3876 spatially and kinematically. We use the resulting rotation sequence, lithium levels, and color–magnitude diagram of candidate members to confirm the presence of a coeval 105 ± 10 Myr population. MELANGE-3 may be part of the recently identified Theia 316 stream. For the two exoplanet systems, we revise the stellar and planetary parameters, taking into account the newly determined age. Fitting the 4.5 yr Kepler light curves, we find that KOI-3876b is a 2.0 ± 0.1
We report the discovery and characterization of a nearby (∼85 pc), older (27 ± 3 Myr), distributed stellar population near Lower Centaurus Crux (LCC), initially identified by searching for stars comoving with a candidate transiting planet from TESS (HD 109833; TOI 1097). We determine the association membership using Gaia kinematics, color–magnitude information, and rotation periods of candidate members. We measure its age using isochrones, gyrochronology, and Li depletion. While the association is near known populations of LCC, we find that it is older than any previously found LCC subgroup (10–16 Myr), and distinct in both position and velocity. In addition to the candidate planets around HD 109833, the association contains four directly imaged planetary-mass companions around three stars, YSES-1, YSES-2, and HD 95086, all of which were previously assigned membership in the younger LCC. Using the Notch pipeline, we identify a second candidate transiting planet around HD 109833. We use a suite of ground-based follow-up observations to validate the two transit signals as planetary in nature. HD 109833 b and c join the small but growing population of <100 Myr transiting planets from TESS. HD 109833 has a rotation period and Li abundance indicative of a young age (≲100 Myr), but a position and velocity on the outskirts of the new population, lower Li levels than similar members, and a color–magnitude diagram position below model predictions for 27 Myr. So, we cannot reject the possibility that HD 109833 is a young field star coincidentally nearby the population.
more » « less- Award ID(s):
- 2143763
- PAR ID:
- 10395228
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 165
- Issue:
- 3
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 85
- Size(s):
- Article No. 85
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract R ⊕planet on a 19.58 day orbit, while Kepler-970 b is a 2.8 ± 0.2R ⊕planet on a 16.73 day orbit. KOI-3876 was previously flagged as an eclipsing binary, which we rule out using radial velocities from APOGEE and statistically validate the signal as planetary in origin. Given its overlap with the Kepler field, MELANGE-3 is valuable for studies of spot evolution on year timescales, and both planets contribute to the growing work on transiting planets in young stellar associations. -
Abstract Young terrestrial worlds are critical test beds to constrain prevailing theories of planetary formation and evolution. We present the discovery of HD 63433 d—a nearby (22 pc), Earth-sized planet transiting a young Sun-like star (TOI-1726, HD 63433). HD 63433 d is the third planet detected in this multiplanet system. The kinematic, rotational, and abundance properties of the host star indicate that it belongs to the young (414 ± 23 Myr) Ursa Major moving group, whose membership we update using new data from the third data release of the Gaia mission and TESS. Our transit analysis of the TESS light curves indicates that HD 63433 d has a radius of 1.1
R ⊕and closely orbits its host star with a period of 4.2 days. To date, HD 63433 d is the smallest confirmed exoplanet with an age less than 500 Myr, and the nearest young Earth-sized planet. Furthermore, the apparent brightness of the stellar host (V ≃ 6.9 mag) makes this transiting multiplanet system favorable to further investigations, including spectroscopic follow-up to probe the atmospheric loss in a young Earth-sized world. -
Abstract Mature super-Earths and sub-Neptunes are predicted to be ≃ Jovian radius when younger than 10 Myr. Thus, we expect to find 5–15
R ⊕planets around young stars even if their older counterparts harbor none. We report the discovery and validation of TOI 1227b, a 0.85 ± 0.05R J(9.5R ⊕) planet transiting a very-low-mass star (0.170 ± 0.015M ⊙) every 27.4 days. TOI 1227's kinematics and strong lithium absorption confirm that it is a member of a previously discovered subgroup in the Lower Centaurus Crux OB association, which we designate the Musca group. We derive an age of 11 ± 2 Myr for Musca, based on lithium, rotation, and the color–magnitude diagram of Musca members. The TESS data and ground-based follow-up show a deep (2.5%) transit. We use multiwavelength transit observations and radial velocities from the IGRINS spectrograph to validate the signal as planetary in nature, and we obtain an upper limit on the planet mass of ≃0.5M J. Because such large planets are exceptionally rare around mature low-mass stars, we suggest that TOI 1227b is still contracting and will eventually turn into one of the more common <5R ⊕planets. -
Despite the thousands of planets in orbit around stars known to date, the mechanisms of planetary formation, migration, and atmospheric loss remain unresolved. In this work, we confirm the planetary nature of a young Saturn-size planet transiting a solar-type star every 8.03 d, TOI-1135 b. The age of the parent star is estimated to be in the interval of 125-1000 Myr based on various activity and age indicators, including its stellar rotation period of 5.13 ± 0.27 days and the intensity of photospheric lithium. We obtained follow-up photometry and spectroscopy, including precise radial velocity measurements using the CARMENES spectrograph, which together with the TESS data allowed us to fully characterise the parent star and its planet. As expected for its youth, the star is rather active and shows strong photometric and spectroscopic variability correlating with its rotation period. We modelled the stellar variability using Gaussian process regression. We measured the planetary radius at 9.02 ± 0.23
R ⊕(0.81 ± 0.02R Jup) and determined a 3σ upper limit of < 51.4M ⊕(< 0.16M Jup) on the planetary mass by adopting a circular orbit. Our results indicate that TOI-1135 b is an inflated planet less massive than Saturn or Jupiter but with a similar radius, which could be in the process of losing its atmosphere by photoevaporation. This new young planet occupies a region of the mass-radius diagram where older planets are scarse, and it could be very helpful to understanding the lower frequency of planets with sizes between Neptune and Saturn. -
Abstract Terrestrial planets are easier to detect around M dwarfs than other types of stars, making them promising for next-generation atmospheric characterization studies. The Transiting Exoplanet Survey Satellite (TESS) mission has greatly increased the number of known M-dwarf planets that we can use to perform population studies, allowing us to explore how the rocky planet occurrence rate varies with host radius, following in the footsteps of past work with Kepler data. In this paper, we use simulations to assess TESS’s yield of small (0.5
R ⊕<R p < 2R ⊕) planet candidates around nearby (d < 30 pc) M dwarfs. We highlight the underappreciated fact that, while TESS was indeed expected to find a large number of planets around M dwarfs overall, it was not expected to have a high planetary yield for the latest M dwarfs. Furthermore, we find that TESS has detected fewer planets around stars withR ⋆< 0.3R ⊙than even was expected (11 observed versus 24 ± 5 expected). We find evidence that the photometric noise of stars in the TESS bandpass increases with decreasing radius for M dwarfs. However, this trend cannot explain the observed distribution of planets. Our main conclusions are (1) the planet occurrence rate likely does not increase, and may decrease for the latest M dwarfs; and (2) there are at least 17, and potentially three times that number, transiting planets around nearby late-M dwarfs that still will not be detected by the end of TESS’s fourth year.