skip to main content


Title: Evidence for an Interaction between the Galactic Center Clouds M0.10–0.08 and M0.11–0.11
Abstract We present high-resolution (∼2–3″; ∼0.1 pc) radio observations of the Galactic center cloud M0.10−0.08 using the Very Large Array at K and Ka band (∼25 and 36 GHz). The M0.10−0.08 cloud is located in a complex environment near the Galactic center Radio Arc and the adjacent M0.11−0.11 molecular cloud. From our data, M0.10−0.08 appears to be a compact molecular cloud (∼3 pc) that contains multiple compact molecular cores (5+; <0.4 pc). In this study, we detect a total of 15 molecular transitions in M0.10−0.08 from the following molecules: NH 3 , HC 3 N, CH 3 OH, HC 5 N, CH 3 CN, and OCS. We have identified more than sixty 36 GHz CH 3 OH masers in M0.10−0.08 with brightness temperatures above 400 K and 31 maser candidates with temperatures between 100 and 400 K. We conduct a kinematic analysis of the gas using NH 3 and detect multiple velocity components toward this region of the Galactic center. The bulk of the gas in this region has a velocity of 51.5 km s −1 (M0.10−0.08) with a lower-velocity wing at 37.6 km s −1 . We also detect a relatively faint velocity component at 10.6 km s −1 that we attribute to being an extension of the M0.11−0.11 cloud. Analysis of the gas kinematics, combined with past X-ray fluorescence observations, suggests M0.10−0.08 and M0.11−0.11 are located in the same vicinity of the Galactic center and could be physically interacting.  more » « less
Award ID(s):
2142300
PAR ID:
10395303
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
936
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
186
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    At centimeter wavelengths, single-dish observations have suggested that the Sagittarius (Sgr) B2 molecular cloud at the Galactic Center hosts weak maser emission from several organic molecules, including CH2NH, HNCNH, and HCOOCH3. However, the lack of spatial distribution information on these new maser species has prevented us from assessing the excitation conditions of the maser emission as well as their pumping mechanisms. Here, we present a mapping study toward Sgr B2 north (N) to locate the region where the complex maser emission originates. We report the first detection of the Class I methanol (CH3OH) maser at 84 GHz and the first interferometric map of the methanimine (CH2NH) maser at 5.29 GHz toward this region. In addition, we present a tool for modeling and fitting the unsaturated molecular maser signals with non-LTE radiative transfer models and Bayesian analysis using the Markov Chain Monte Carlo approach. These enable us to quantitatively assess the observed spectral profiles. The results suggest a two-chain-clump model for explaining the intense CH3OH Class I maser emission toward a region with low continuum background radiation. By comparing the spatial origin and extent of maser emission from several molecular species, we find that the 5.29 GHz CH2NH maser has a close spatial relationship with the 84 GHz CH3OH Class I masers. This relationship serves as observational evidence to suggest a similar collisional pumping mechanism for these maser transitions.

     
    more » « less
  2. Abstract

    The study of the interaction between ionized jets, molecular outflows, and their environments is critical to understanding high-mass star formation, especially because jets and outflows are thought to be key in the transfer of angular momentum outward from accretion disks. We report a low spectral resolution Karl G. Jansky Very Large Array (VLA) survey for OH, NH3, CH3OH, and hydrogen radio recombination lines, toward a sample of 58 high-mass star-forming regions that contain numerous ionized jet candidates. The observations are from a survey designed to detect radio continuum; the novel aspect of this work is to search for spectral lines in broadband VLA data (we provide the script developed in this work to facilitate exploration of other data sets). We report detection of 25 GHz CH3OH transitions toward 10 sources; 5 of them also show NH3emission. We found that most of the sources detected in CH3OH and NH3have been classified as ionized jets or jet candidates and that the emission lines are coincident with, or very near (≲0.1 pc), these sources; hence, these molecular lines could be used as probes of the environment near the launching site of jets/outflows. No radio recombination lines were detected, but we found that the rms noise of stacked spectra decreases following the radiometer equation. Therefore, detecting radio recombination lines in a sample of brighter free–free continuum sources should be possible. This work demonstrates the potential of broadband VLA continuum observations as low resolution spectral-line scans.

     
    more » « less
  3. Abstract

    The Atacama Large Millimeter/submillimeter Array (ALMA) serendipitously detected H2O $J_{K_{\rm a}, K_{\rm c}} = 10_{2,9}$–93, 6 emission at 321 GHz in NGC 1052. This is the first submillimeter maser detection in a radio galaxy and the most luminous 321 GHz H2O maser known to-date with the isotropic luminosity of $1090\, L_{\odot }$. The line profile consists of a broad velocity component with FWHM = 208 ± 12 km s−1 straddling the systemic velocity and a narrow component with FWHM = 44 ± 3 km s−1 blueshifted by 160 km s−1. The profile is significantly different from the known 22 GHz 61, 6–52, 3 maser which shows a broad profile redshifted by 193 km s−1. The submillimeter maser is spatially unresolved with a synthesized beam of ${0{^{\prime \prime}_{.}}68} \times {0{^{\prime \prime}_{.}}56}$ and coincides with the continuum core position within 12 pc. These results indicate amplification of the continuum emission through high-temperature (>1000 K) and dense [n(H2O) > 104 cm−3] molecular gas in front of the core.

     
    more » « less
  4. ABSTRACT

    We present a study of molecular gas, traced via CO (3–2) from Atacama Large Millimeter/submillimeter Array data, of four z < 0.2, ‘radio quiet’, type 2 quasars (Lbol ∼ 1045.3–1046.2 erg s−1; L$_{\mathrm{1.4\, GHz}}\sim 10^{23.7}\!-\!10^{24.3}$ W Hz−1). Targets were selected to have extended radio lobes (≥ 10 kpc), and compact, moderate-power jets (1–10 kpc; Pjet ∼ 1043.2–1043.7 erg s−1). All targets show evidence of central molecular outflows, or injected turbulence, within the gas discs (traced via high-velocity wing components in CO emission-line profiles). The inferred velocities (Vout = 250–440 km s−1) and spatial scales (0.6–1.6 kpc), are consistent with those of other samples of luminous low-redshift active galactic nuclei. In two targets, we observe extended molecular gas structures beyond the central discs, containing 9–53  per cent of the total molecular gas mass. These structures tend to be elongated, extending from the core, and wrap-around (or along) the radio lobes. Their properties are similar to the molecular gas filaments observed around radio lobes of, mostly ‘radio loud’, brightest cluster galaxies. They have the following: projected distances of 5–13 kpc; bulk velocities of 100–340 km s−1; velocity dispersion of 30–130 km s−1; inferred mass outflow rates of 4–20 M⊙ yr−1; and estimated kinetic powers of 1040.3–1041.7 erg s−1. Our observations are consistent with simulations that suggest moderate-power jets can have a direct (but modest) impact on molecular gas on small scales, through direct jet–cloud interactions. Then, on larger scales, jet-cocoons can push gas aside. Both processes could contribute to the long-term regulation of star formation.

     
    more » « less
  5. Context. The 1°.3 (G1.3) and 1°.6 (G1.6) cloud complexes in the central molecular zone (CMZ) of our Galaxy have been proposed to possibly reside at the intersection region of the X1 and X2 orbits for several reasons. This includes the detection of co-spatial low- and high-velocity clouds, high velocity dispersion, high fractional molecular abundances of shock-tracing molecules, and kinetic temperatures that are higher than for usual CMZ clouds. Aims. By investigating the morphology and deriving physical properties as well as chemical composition, we want to find the origin of the turbulent gas and, in particular, whether evidence of an interaction between clouds can be identified. Methods. We mapped both cloud complexes in molecular lines in the frequency range from 85 to 117 GHz with the IRAM 30 m telescope. The APEX 12m telescope was used to observe higher frequency transitions between 210 and 475 GHz from selected molecules that are emitted from higher energy levels. We performed non-local thermodynamic equilibrium (non-LTE) modelling of the emission of an ensemble of CH 3 CN lines to derive kinetic temperatures and H 2 volume densities. These were used as starting points for non-LTE modelling of other molecules, for which column densities and abundances were determined and compared with values found for other sources in the CMZ. Results. The kinematic structure of G1.3 reveals an ‘emission bridge’ at intermediate velocities (~150 km s −1 ) connecting low-velocity (~100 km s −1 ) and high-velocity (~180 km s −1 ) gas and an overall fluffy shell-like structure. These may represent observational evidence of cloud-cloud interactions. Low- and high-velocity gas components in G1.6 do not show this type of evidence of an interaction, suggesting that they are spatially separated. We selected three positions in each cloud complex for further analysis. Each position reveals several gas components at various peak velocities and of various line widths. We derived kinetic temperatures of 60–100 K and H 2 volume densities of 10 4 –10 5 cm −3 in both complexes. Molecular abundances relative to H 2 suggest a similar chemistry of the two clouds, which is moreover similar to that of other GC clouds and, especially, agrees well with that of G+0.693 and G−0.11. Conclusions. We conclude that G1.3 may indeed exhibit signs of cloud-cloud interactions. In particular, we propose an interaction of gas that is accreted from the near-side dust lane to the CMZ, with gas pre-existing at this location. Low- and high-velocity components in G1.6 are rather coincidentally observed along the same line of sight. They may be associated with either overshot decelerated gas from the far-side dust line or actual CMZ gas and high-velocity gas moving on a dust lane. These scenarios would be in agreement with numerical simulations. 
    more » « less