The problem of sampling constrained continuous distributions has frequently appeared in many machine/statistical learning models. Many Markov Chain Monte Carlo (MCMC) sampling methods have been adapted to handle different types of constraints on random variables. Among these methods, Hamilton Monte Carlo (HMC) and the related approaches have shown significant advantages in terms of computational efficiency compared with other counterparts. In this article, we first review HMC and some extended sampling methods, and then we concretely explain three constrained HMC-based sampling methods, reflection, reformulation, and spherical HMC. For illustration, we apply these methods to solve three well-known constrained sampling problems, truncated multivariate normal distributions, Bayesian regularized regression, and nonparametric density estimation. In this review, we also connect constrained sampling with another similar problem in the statistical design of experiments with constrained design space.
more »
« less
High-dimensional nonlinear Bayesian inference of poroelastic fields from pressure data
We investigate solution methods for large-scale inverse problems governed by partial differential equations (PDEs) via Bayesian inference. The Bayesian framework provides a statistical setting to infer uncertain parameters from noisy measurements. To quantify posterior uncertainty, we adopt Markov Chain Monte Carlo (MCMC) approaches for generating samples. To increase the efficiency of these approaches in high-dimension, we make use of local information about gradient and Hessian of the target potential, also via Hamiltonian Monte Carlo (HMC). Our target application is inferring the field of soil permeability processing observations of pore pressure, using a nonlinear PDE poromechanics model for predicting pressure from permeability. We compare the performance of different sampling approaches in this and other settings. We also investigate the effect of dimensionality and non-gaussianity of distributions on the performance of different sampling methods.
more »
« less
- PAR ID:
- 10395422
- Date Published:
- Journal Name:
- Mathematics and Mechanics of Solids
- ISSN:
- 1081-2865
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate approximate Bayesian inference techniques for nonlinear systems described by ordinary differential equation (ODE) models. In particular, the approximations will be based on set-valued reachability analysis approaches, yielding approximate models for the posterior distribution. Nonlinear ODEs are widely used to mathematically describe physical and biological models. However, these models are often described by parameters that are not directly measurable and have an impact on the system behaviors. Often, noisy measurement data combined with physical/biological intuition serve as the means for finding appropriate values of these parameters.Our approach operates under a Bayesian framework, given prior distribution over the parameter space and noisy observations under a known sampling distribution. We explore subsets of the space of model parameters, computing bounds on the likelihood for each subset. This is performed using nonlinear set-valued reachability analysis that is made faster by means of linearization around a reference trajectory. The tiling of the parameter space can be adaptively refined to make bounds on the likelihood tighter. We evaluate our approach on a variety of nonlinear benchmarks and compare our results with Markov Chain Monte Carlo and Sequential Monte Carlo approaches.more » « less
-
We propose a novel adaptive empirical Bayesian (AEB) method for sparse deep learning, where the sparsity is ensured via a class of self-adaptive spike-and-slab priors. The proposed method works by alternatively sampling from an adaptive hierarchical posterior distribution using stochastic gradient Markov Chain Monte Carlo (MCMC) and smoothly optimizing the hyperparameters using stochastic approximation (SA). We further prove the convergence of the proposed method to the asymptotically correct distribution under mild conditions. Empirical applications of the proposed method lead to the state-of-the-art performance on MNIST and Fashion MNIST with shallow convolutional neural networks (CNN) and the state-of-the-art compression performance on CIFAR10 with Residual Networks. The proposed method also improves resistance to adversarial attacks.more » « less
-
Nonlinear state-space models are ubiquitous in modeling real-world dynamical systems. Sequential Monte Carlo (SMC) techniques, also known as particle methods, are a well-known class of parameter estimation methods for this general class of state-space models. Existing SMC-based techniques rely on excessive sampling of the parameter space, which makes their computation intractable for large systems or tall data sets. Bayesian optimization techniques have been used for fast inference in state-space models with intractable likelihoods. These techniques aim to find the maximum of the likelihood function by sequential sampling of the parameter space through a single SMC approximator. Various SMC approximators with different fidelities and computational costs are often available for sample- based likelihood approximation. In this paper, we propose a multi-fidelity Bayesian optimization algorithm for the inference of general nonlinear state-space models (MFBO-SSM), which enables simultaneous sequential selection of parameters and approximators. The accuracy and speed of the algorithm are demonstrated by numerical experiments using synthetic gene expression data from a gene regulatory network model and real data from the VIX stock price index.more » « less
-
In science and engineering, we often work with models designed for accurate prediction of variables of interest. Recognizing that these models are approximations of reality, it becomes desirable to apply multiple models to the same data and integrate their outcomes. In this paper, we operate within the Bayesian paradigm, relying on Gaussian processes as our models. These models generate predictive probability density functions (pdfs), and the objective is to integrate them systematically, employing both linear and log-linear pooling. We introduce novel approaches for log-linear pooling, determining input-dependent weights for the predictive pdfs of the Gaussian processes. The aggregation of the pdfs is realized through Monte Carlo sampling, drawing samples of weights from their posterior. The performance of these methods, as well as those based on linear pooling, is demonstrated using a synthetic dataset.more » « less
An official website of the United States government

