skip to main content


Title: An investigation of spatial-temporal patterns and predictions of the coronavirus 2019 pandemic in Colombia, 2020–2021
Colombia announced the first case of severe acute respiratory syndrome coronavirus 2 on March 6, 2020. Since then, the country has reported a total of 5,002,387 cases and 127,258 deaths as of October 31, 2021. The aggressive transmission dynamics of SARS-CoV-2 motivate an investigation of COVID-19 at the national and regional levels in Colombia. We utilize the case incidence and mortality data to estimate the transmission potential and generate short-term forecasts of the COVID-19 pandemic to inform the public health policies using previously validated mathematical models. The analysis is augmented by the examination of geographic heterogeneity of COVID-19 at the departmental level along with the investigation of mobility and social media trends. Overall, the national and regional reproduction numbers show sustained disease transmission during the early phase of the pandemic, exhibiting sub-exponential growth dynamics. Whereas the most recent estimates of reproduction number indicate disease containment, with R t <1.0 as of October 31, 2021. On the forecasting front, the sub-epidemic model performs best at capturing the 30-day ahead COVID-19 trajectory compared to the Richards and generalized logistic growth model. Nevertheless, the spatial variability in the incidence rate patterns across different departments can be grouped into four distinct clusters. As the case incidence surged in July 2020, an increase in mobility patterns was also observed. On the contrary, a spike in the number of tweets indicating the stay-at-home orders was observed in November 2020 when the case incidence had already plateaued, indicating the pandemic fatigue in the country.  more » « less
Award ID(s):
2047828
NSF-PAR ID:
10395448
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Wu, Joseph T.
Date Published:
Journal Name:
PLOS Neglected Tropical Diseases
Volume:
16
Issue:
3
ISSN:
1935-2735
Page Range / eLocation ID:
e0010228
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Adrish, Muhammad (Ed.)
    Mexico has experienced one of the highest COVID-19 mortality rates in the world. A delayed implementation of social distancing interventions in late March 2020 and a phased reopening of the country in June 2020 has facilitated sustained disease transmission in the region. In this study we systematically generate and compare 30-day ahead forecasts using previously validated growth models based on mortality trends from the Institute for Health Metrics and Evaluation for Mexico and Mexico City in near real-time. Moreover, we estimate reproduction numbers for SARS-CoV-2 based on the methods that rely on genomic data as well as case incidence data. Subsequently, functional data analysis techniques are utilized to analyze the shapes of COVID-19 growth rate curves at the state level to characterize the spatiotemporal transmission patterns of SARS-CoV-2. The early estimates of the reproduction number for Mexico were estimated between R t ~1.1–1.3 from the genomic and case incidence data. Moreover, the mean estimate of R t has fluctuated around ~1.0 from late July till end of September 2020. The spatial analysis characterizes the state-level dynamics of COVID-19 into four groups with distinct epidemic trajectories based on epidemic growth rates. Our results show that the sequential mortality forecasts from the GLM and Richards model predict a downward trend in the number of deaths for all thirteen forecast periods for Mexico and Mexico City. However, the sub-epidemic and IHME models perform better predicting a more realistic stable trajectory of COVID-19 mortality trends for the last three forecast periods (09/21-10/21, 09/28-10/27, 09/28-10/27) for Mexico and Mexico City. Our findings indicate that phenomenological models are useful tools for short-term epidemic forecasting albeit forecasts need to be interpreted with caution given the dynamic implementation and lifting of social distancing measures. 
    more » « less
  2. Abstract Background

    Non-pharmaceutical interventions (NPIs) have been implemented worldwide to curb COVID-19 spread. Belarus is a rare case of a country with a relatively modern healthcare system, where highly limited NPIs have been enacted. Thus, investigation of Belarusian COVID-19 dynamics is essential for the local and global assessment of the impact of NPI strategies.

    Methods

    We integrate genomic epidemiology and surveillance methods to investigate the spread of SARS-CoV-2 in Belarus in 2020. We utilize phylodynamics, phylogeography, and probabilistic bias inference to study the virus import and export routes, the dynamics of the effective reproduction number, and the incidence of SARS-CoV-2 infection.

    Results

    Here we show that the estimated cumulative number of infections by June 2020 exceeds the confirmed case number by a factor of ~4 (95% confidence interval (2; 9)). Intra-country SARS-CoV-2 genomic diversity originates from at least 18 introductions from different regions, with a high proportion of regional transmissions. Phylodynamic analysis indicates a moderate reduction of the effective reproductive number after the introduction of limited NPIs, but its magnitude is lower than for developed countries with large-scale NPIs. On the other hand, the effective reproduction number estimate is comparable with that for the neighboring Ukraine, where NPIs were broader.

    Conclusions

    The example of Belarus demonstrates how countries with relatively low outward population mobility continue to be integral parts of the global epidemiological environment. Comparison of the effective reproduction number dynamics for Belarus and other countries reveals the effect of different NPI strategies but also emphasizes the role of regional Eastern European sociodemographic factors in the virus spread.

     
    more » « less
  3. Aboelhadid, Shawky M (Ed.)
    The COVID-19 pandemic has caused over 500 million cases and over six million deaths globally. From these numbers, over 12 million cases and over 250 thousand deaths have occurred on the African continent as of May 2022. Prevention and surveillance remains the cornerstone of interventions to halt the further spread of COVID-19. Google Health Trends (GHT), a free Internet tool, may be valuable to help anticipate outbreaks, identify disease hotspots, or understand the patterns of disease surveillance. We collected COVID-19 case and death incidence for 54 African countries and obtained averages for four, five-month study periods in 2020–2021. Average case and death incidences were calculated during these four time periods to measure disease severity. We used GHT to characterize COVID-19 incidence across Africa, collecting numbers of searches from GHT related to COVID-19 using four terms: ‘coronavirus’, ‘coronavirus symptoms’, ‘COVID19’, and ‘pandemic’. The terms were related to weekly COVID-19 case incidences for the entire study period via multiple linear and weighted linear regression analyses. We also assembled 72 variables assessing Internet accessibility, demographics, economics, health, and others, for each country, to summarize potential mechanisms linking GHT searches and COVID-19 incidence. COVID-19 burden in Africa increased steadily during the study period. Important increases for COVID-19 death incidence were observed for Seychelles and Tunisia. Our study demonstrated a weak correlation between GHT and COVID-19 incidence for most African countries. Several variables seemed useful in explaining the pattern of GHT statistics and their relationship to COVID-19 including: log of average weekly cases, log of cumulative total deaths, and log of fixed total number of broadband subscriptions in a country. Apparently, GHT may best be used for surveillance of diseases that are diagnosed more consistently. Overall, GHT-based surveillance showed little applicability in the studied countries. GHT for an ongoing epidemic might be useful in specific situations, such as when countries have significant levels of infection with low variability. Future studies might assess the algorithm in different epidemic contexts. 
    more » « less
  4. Abstract Human mobility plays an important role in the dynamics of infectious disease spread. Evidence from the initial nationwide lockdowns for COVID− 19 indicates that restricting human mobility is an effective strategy to contain the spread. While a direct correlation was observed early on, it is not known how mobility impacted COVID− 19 infection growth rates once lockdowns are lifted, primarily due to modulation by other factors such as face masks, social distancing, and the non-linear patterns of both mobility and infection growth. This paper introduces a piece-wise approach to better explore the phase-wise association between state-level COVID− 19 incidence data and anonymized mobile phone data for various states in the United States. Prior literature analyzed the linear correlation between mobility and the number of cases during the early stages of the pandemic. However, it is important to capture the non-linear dynamics of case growth and mobility to be usable for both tracking and forecasting COVID− 19 infections, which is accomplished by the piece-wise approach. The associations between mobility and case growth rate varied widely for various phases of the epidemic curve when the stay-at-home orders were lifted. The mobility growth patterns had a strong positive association of 0.7 with the growth in the number of cases, with a lag of 5 to 7 weeks, for the fast-growth phase of the pandemic, for only 20 states that had a peak between July 1st and September 30, 2020. Overall though, mobility cannot be used to predict the rise in the number of cases after initial lockdowns have been lifted. Our analysis explores the gradual diminishing value of mobility associations in the later stage of the outbreak. Our analysis indicates that the relationship between mobility and the increase in the number of cases, once lockdowns have been lifted, is tenuous at best and there is no strong relationship between these signals. But we identify the remnants of the last associations in specific phases of the growth curve. 
    more » « less
  5. The ongoing highly contagious coronavirus disease 2019 (COVID-19) pandemic, which started in Wuhan, China, in December 2019, has now become a global public health problem. Using publicly available data from the COVID-19 data repository of Our World in Data, we aimed to investigate the influences of spatial socio-economic vulnerabilities and neighbourliness on the COVID-19 burden in African countries. We analyzed the first wave (January–September 2020) and second wave (October 2020 to May 2021) of the COVID-19 pandemic using spatial statistics regression models. As of 31 May 2021, there was a total of 4,748,948 confirmed COVID-19 cases, with an average, median, and range per country of 101,041, 26,963, and 2191 to 1,665,617, respectively. We found that COVID-19 prevalence in an Africa country was highly dependent on those of neighbouring Africa countries as well as its economic wealth, transparency, and proportion of the population aged 65 or older (p-value < 0.05). Our finding regarding the high COVID-19 burden in countries with better transparency and higher economic wealth is surprising and counterintuitive. We believe this is a reflection on the differences in COVID-19 testing capacity, which is mostly higher in more developed countries, or data modification by less transparent governments. Country-wide integrated COVID suppression strategies such as limiting human mobility from more urbanized to less urbanized countries, as well as an understanding of a county’s social-economic characteristics, could prepare a country to promptly and effectively respond to future outbreaks of highly contagious viral infections such as COVID-19. 
    more » « less