skip to main content

Search for: All records

Award ID contains: 2047828

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Non-pharmaceutical interventions (NPIs) have been implemented worldwide to curb COVID-19 spread. Belarus is a rare case of a country with a relatively modern healthcare system, where highly limited NPIs have been enacted. Thus, investigation of Belarusian COVID-19 dynamics is essential for the local and global assessment of the impact of NPI strategies.

    Methods

    We integrate genomic epidemiology and surveillance methods to investigate the spread of SARS-CoV-2 in Belarus in 2020. We utilize phylodynamics, phylogeography, and probabilistic bias inference to study the virus import and export routes, the dynamics of the effective reproduction number, and the incidence of SARS-CoV-2 infection.

    Results

    Here we show that the estimated cumulative number of infections by June 2020 exceeds the confirmed case number by a factor of ~4 (95% confidence interval (2; 9)). Intra-country SARS-CoV-2 genomic diversity originates from at least 18 introductions from different regions, with a high proportion of regional transmissions. Phylodynamic analysis indicates a moderate reduction of the effective reproductive number after the introduction of limited NPIs, but its magnitude is lower than for developed countries with large-scale NPIs. On the other hand, the effective reproduction number estimate is comparable with that for the neighboring Ukraine, where NPIs were broader.

    Conclusions

    The example ofmore »Belarus demonstrates how countries with relatively low outward population mobility continue to be integral parts of the global epidemiological environment. Comparison of the effective reproduction number dynamics for Belarus and other countries reveals the effect of different NPI strategies but also emphasizes the role of regional Eastern European sociodemographic factors in the virus spread.

    « less
  2. Abstract Public health intervention to contain the ongoing COVID-19 pandemic significantly differed by country since the SARS-CoV-2 spread varied regionally in time and in scale. Since vaccinations were not available until the end of 2020 non-pharmaceutical interventions (NPIs) remained the only strategies to mitigate the pandemic spread at that time. Belarus in Europe is one of a few countries with a high Human Development Index where no lockdowns have ever been implemented and only limited NPIs have taken place for a period of time. Therefore, the Belarusian case was evaluated and compared in terms of the mortality burden. Since the COVID-19 mortality was low, the excess overall mortality was studied for Belarus. Since no overall mortality data have been reported past June 2020 the analysis was complemented by the study of Google Trends funeral-related search queries up until August 2021. Depending on the model, the Belarusian mortality for June of 2020 was 29 to 39% higher than otherwise expected with the corresponding estimated excess death was from 2953 to 3690 while the reported COVID-19 mortality for June 2020 was only 157 cases. The Belarusian excess mortality for June 2020 was higher than for all neighboring countries with an excess of 5% formore »Poland, 5% for Ukraine, 8% for Russia, 11% for Lithuania and 11% for Latvia. The relationship between Google Trends and mortality time series was studied using Granger’s test and the results were statistically significant. The results for Google Trends searches did vary by key phrase with the largest excess of 138% for April 2020 and 148% for September 2020 was observed for a key phrase “coffin”, while the largest excess of 218% for January 2021 was observed for “funeral services”. In summary, there are indications of the excess overall mortality in Belarus, which is larger than the reported COVID-19-related mortality.« less
    Free, publicly-accessible full text available December 1, 2023
  3. Abstract Background Investigation of outbreaks to identify the primary case is crucial for the interruption and prevention of transmission of infectious diseases. These individuals may have a higher risk of participating in near future transmission events when compared to the other patients in the outbreak, so directing more transmission prevention resources towards these individuals is a priority. Although the genetic characterization of intra-host viral populations can aid the identification of transmission clusters, it is not trivial to determine the directionality of transmissions during outbreaks, owing to complexity of viral evolution. Here, we present a new computational framework, PYCIVO: primary case inference in viral outbreaks. This framework expands upon our earlier work in development of QUENTIN, which builds a probabilistic disease transmission tree based on simulation of evolution of intra-host hepatitis C virus (HCV) variants between cases involved in direct transmission during an outbreak. PYCIVO improves upon QUENTIN by also adding a custom heterogeneity index and identifying the scenario when the primary case may have not been sampled. Results These approaches were validated using a set of 105 sequence samples from 11 distinct HCV transmission clusters identified during outbreak investigations, in which the primary case was epidemiologically verified. Both models canmore »detect the correct primary case in 9 out of 11 transmission clusters (81.8%). However, while QUENTIN issues erroneous predictions on the remaining 2 transmission clusters, PYCIVO issues a null output for these clusters, giving it an effective prediction accuracy of 100%. To further evaluate accuracy of the inference, we created 10 modified transmission clusters in which the primary case had been removed. In this scenario, PYCIVO was able to correctly identify that there was no primary case in 8/10 (80%) of these modified clusters. This model was validated with HCV; however, this approach may be applicable to other microbial pathogens. Conclusions PYCIVO improves upon QUENTIN by also implementing a custom heterogeneity index which empowers PYCIVO to make the important ‘No primary case’ prediction. One or more samples, possibly including the primary case, may have not been sampled, and this designation is meant to account for these scenarios.« less
    Free, publicly-accessible full text available December 1, 2023
  4. Free, publicly-accessible full text available October 1, 2023
  5. Free, publicly-accessible full text available April 1, 2023
  6. Wu, Joseph T. (Ed.)
    Colombia announced the first case of severe acute respiratory syndrome coronavirus 2 on March 6, 2020. Since then, the country has reported a total of 5,002,387 cases and 127,258 deaths as of October 31, 2021. The aggressive transmission dynamics of SARS-CoV-2 motivate an investigation of COVID-19 at the national and regional levels in Colombia. We utilize the case incidence and mortality data to estimate the transmission potential and generate short-term forecasts of the COVID-19 pandemic to inform the public health policies using previously validated mathematical models. The analysis is augmented by the examination of geographic heterogeneity of COVID-19 at the departmental level along with the investigation of mobility and social media trends. Overall, the national and regional reproduction numbers show sustained disease transmission during the early phase of the pandemic, exhibiting sub-exponential growth dynamics. Whereas the most recent estimates of reproduction number indicate disease containment, with R t <1.0 as of October 31, 2021. On the forecasting front, the sub-epidemic model performs best at capturing the 30-day ahead COVID-19 trajectory compared to the Richards and generalized logistic growth model. Nevertheless, the spatial variability in the incidence rate patterns across different departments can be grouped into four distinct clusters. As themore »case incidence surged in July 2020, an increase in mobility patterns was also observed. On the contrary, a spike in the number of tweets indicating the stay-at-home orders was observed in November 2020 when the case incidence had already plateaued, indicating the pandemic fatigue in the country.« less
    Free, publicly-accessible full text available March 4, 2023
  7. Abstract Aligning sequencing reads onto a reference is an essential step of the majority of genomic analysis pipelines. Computational algorithms for read alignment have evolved in accordance with technological advances, leading to today’s diverse array of alignment methods. We provide a systematic survey of algorithmic foundations and methodologies across 107 alignment methods, for both short and long reads. We provide a rigorous experimental evaluation of 11 read aligners to demonstrate the effect of these underlying algorithms on speed and efficiency of read alignment. We discuss how general alignment algorithms have been tailored to the specific needs of various domains in biology.