skip to main content


Title: Determining Region of Influence of Ego-Vehicle on Roadways for Vehicle Decision Making
Autonomous Vehicles (AVs) are an emerging and highly impactful technology on today's roads. When assessing the performance of AVs, it is useful to study their improvement relative to common metrics such as fuel economy/emissions, safety, and congestion. But metrics of the vehicle's performance alone may not be complete; an AV that is affecting and reacting to a smart traffic light, for example, may improve its own performance, but may cause the same intersection to degrade the performance of other vehicles around the AV. Similar concerns arise in nearly all AV topics: platooning, light pre-emption, lane tracking, etc. Thus, the assessment of the vehicle's impacts on surrounding traffic is important, possibly even more important than the improvements enabled on the AV alone. But what boundary, or factors, define the vehicles, equipment, etc. “surrounding” an AV? The goal of this work is to characterize the boundary of vehicles “surrounding” an AV, referred to as Region of Influence, or ROI. Specifically, this work focuses on the problem that considering a perturbation is exerted into a traffic system, how far in time and space the perturbation from an AV’s decision can influence the surrounding system’s behavior. To achieve the goal, we utilized AIMSUN, a microscopic traffic simulator, to perform baseline and perturbed simulations. The ROI was evaluated by comparing trajectories of traffic surrounding the ego vehicle using different metrics, including difference in trajectories, Euclidian distance, rate of change of Euclidian distance, total number of lane changes over the whole simulation space versus time and total number of lane changes over the whole simulation time versus distance to ego vehicle. The results show that the ROI can be viewed from different perspectives using these metrics, and it is dependent on speed variance of the traffic.  more » « less
Award ID(s):
1932509
NSF-PAR ID:
10395527
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2022 Road Safety and Simulation International Conference (RSS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ability to model and predict ego-vehicle's surrounding traffic is crucial for autonomous pilots and intelligent driver-assistance systems. Acceleration prediction is important as one of the major components of traffic prediction. This paper proposes novel approaches to the acceleration prediction problem. By representing spatial relationships between vehicles with a graph model, we build a generalized acceleration prediction framework. This paper studies the effectiveness of proposed Graph Convolution Networks, which operate on graphs predicting the acceleration distribution for vehicles driving on highways. We further investigate prediction improvement through integrating of Recurrent Neural Networks to disentangle the temporal complexity inherent in the traffic data. Results from simulation with comprehensive performance metrics support that our proposed networks outperform state-of-the-art methods in generating realistic trajectories over a prediction horizon. 
    more » « less
  2. Connected and automated vehicles (CAVs) extend urban traffic control from temporal to spatiotemporal by enabling the control of CAV trajectories. Most of the existing studies on CAV trajectory planning only consider longitudinal behaviors (i.e., in-lane driving), or assume that the lane changing can be done instantaneously. The resultant CAV trajectories are not realistic and cannot be executed at the vehicle level. The aim of this paper is to propose a full trajectory planning model that considers both in-lane driving and lane changing maneuvers. The trajectory generation problem is modeled as an optimization problem and the cost function considers multiple driving features including safety, efficiency, and comfort. Ten features are selected in the cost function to capture both in-lane driving and lane changing behaviors. One major challenge in generating a trajectory that reflects certain driving policies is to balance the weights of different features in the cost function. To address this challenge, it is proposed to optimize the weights of the cost function by imitation learning. Maximum entropy inverse reinforcement learning is applied to obtain the optimal weight for each feature and then CAV trajectories are generated with the learned weights. Experiments using the Next Generation Simulation (NGSIM) dataset show that the generated trajectory is very close to the original trajectory with regard to the Euclidean distance displacement, with a mean average error of less than 1 m. Meanwhile, the generated trajectories can maintain safety gaps with surrounding vehicles and have comparable fuel consumption.

     
    more » « less
  3. null (Ed.)
    Recent decades have witnessed the breakthrough of autonomous vehicles (AVs), and the sensing capabilities of AVs have been dramatically improved. Various sensors installed on AVs will be collecting massive data and perceiving the surrounding traffic continuously. In fact, a fleet of AVs can serve as floating (or probe) sensors, which can be utilized to infer traffic information while cruising around the roadway networks. Unlike conventional traffic sensing methods relying on fixed location sensors or moving sensors that acquire only the information of their carrying vehicle, this paper leverages data from AVs carrying sensors for not only the information of the AVs, but also the characteristics of the surrounding traffic. A high-resolution data-driven traffic sensing framework is proposed, which estimates the fundamental traffic state characteristics, namely, flow, density and speed in high spatio-temporal resolutions and of each lane on a general road, and it is developed under different levels of AV perception capabilities and for any AV market penetration rate. Experimental results show that the proposed method achieves high accuracy even with a low AV market penetration rate. This study would help policymakers and private sectors (e.g., Waymo) to understand the values of massive data collected by AVs in traffic operation and management. 
    more » « less
  4. null (Ed.)
    This study focuses on how to improve the merge control prior to lane reduction points due to either accidents or constructions. A Cooperative Car-following and Merging (CCM) control strategy is proposed considering the coexistence of Automated Vehicles (AVs) and Human-4 Driven Vehicles (HDVs). CCM introduces a modified/generalized Cooperative Adaptive Cruise Control (CACC) for vehicle longitudinal control prior to lane reduction points. It also takes courtesy into account to ensure that AVs behave responsibly and ethically. CCM is evaluated using microscopic traffic simulation and compared with no control and CACC merge strategies. The results show that CCM consistently generates the lowest delays and highest throughputs approaching the theoretical capacity. Its safety benefits are also found to be significant based on vehicle trajectories and density maps. AVs in this study do not need to be fully automated and can be at Level-1 automation. CCM only requires automated longitudinal control such as Adaptive Cruise Control (ACC) and information sharing among vehicles, and ACC is already commercially available on many new vehicles. Also, it does not need 100% ACC penetration, presenting itself as a promising and practical solution for improving traffic operations in lane reduction transition areas such as highway work zones. 
    more » « less
  5. Despite the potential of autonomous vehicles (AV) to improve traffic efficiency and safety, many studies have shown that traffic accidents in a hybrid traffic environment where both AV and human-driven vehicles (HVs) are present are inevitable because of the unpredictability of HVs. Given that eliminating accidents is impossible, an achievable goal is to design AVs in a way so that they will not be blamed for any accident in which they are involved in. In this paper, we propose BlaFT Rules – or Blame-Free hybrid Traffic motion planning Rules. An AV following BlaFT Rules is designed to be cooperative with HVs as well as other AVs, and will not be blamed for accidents in a structured road environment. We provide proofs that no accidents will happen if all AVs are using a BlaFT Rules conforming motion planner, and that an AV using BlaFT Rules will be blame-free even if it is involved in a collision in hybrid traffic. We implemented a motion planning algorithm that conforms to BlaFT Rules called BlaFT. We instantiated scores of BlaFT controlled AVs and HVs in an urban roadscape loop in the SUMO simulator and show that over time that as the percentage of BlaFT vehicles increases, the traffic becomes safer even with HVs involved. Adding BlaFT vehicles increases the efficiency of traffic as a whole by up to 34% over HVs alone. 
    more » « less