Car-following (CF) behavior is a fundamental of traffic flow modeling; it can be used for the virtual testing of connected and automated vehicles and the simulation of various types of traffic flow, such as free flow and traffic oscillation. Although existing CF models can replicate the free flow well, they are incapable of simulating complicated traffic oscillation, and it is difficult to strike a balance between accuracy and efficiency. This article investigates the error variation when the traffic oscillation is simulated by the intelligent driver model (IDM). Then, it divides the traffic oscillation into four phases (coasting, deceleration, acceleration, and stationary) by using the space headway of multiple steps. To simulate traffic oscillation between multiple human-driven vehicles, a dynamic transformation CF model is proposed, which includes the long-time prediction submodel [modified sequence-to-sequence (Seq2seq)] model, short-time prediction submodel (Transformer), and their dynamic transformation strategy]. The first submodel is utilized to simulate the coasting and stationary phases, while the second submodel is utilized to simulate the acceleration and deceleration phases. The results of experiments indicated that compared to K -nearest neighbors, IDM, and Seq2seq CF models, the dynamic transformation CF model reduces the trajectory error by 60.79–66.69% in microscopic traffic flow simulations, 7.71–29.91% in mesoscopic traffic flow simulations, and 1.59–18.26% in macroscopic traffic flow simulations. Moreover, the runtime of the dynamic transformation CF model (Inference) decreased by 14.43–66.17% when simulating the large-scale traffic flow. 
                        more » 
                        « less   
                    
                            
                            Graph Convolution Networks for Probabilistic Modeling of Driving Acceleration
                        
                    
    
            The ability to model and predict ego-vehicle's surrounding traffic is crucial for autonomous pilots and intelligent driver-assistance systems. Acceleration prediction is important as one of the major components of traffic prediction. This paper proposes novel approaches to the acceleration prediction problem. By representing spatial relationships between vehicles with a graph model, we build a generalized acceleration prediction framework. This paper studies the effectiveness of proposed Graph Convolution Networks, which operate on graphs predicting the acceleration distribution for vehicles driving on highways. We further investigate prediction improvement through integrating of Recurrent Neural Networks to disentangle the temporal complexity inherent in the traffic data. Results from simulation with comprehensive performance metrics support that our proposed networks outperform state-of-the-art methods in generating realistic trajectories over a prediction horizon. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1650512
- PAR ID:
- 10323254
- Date Published:
- Journal Name:
- 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Motivated by connected and automated vehicle (CAV) technologies, this paper proposes a data-driven optimization-based Model Predictive Control (MPC) modeling framework for the Cooperative Adaptive Cruise Control (CACC) of a string of CAVs under uncertain traffic conditions. The proposed data-driven optimization-based MPC modeling framework aims to improve the stability, robustness, and safety of longitudinal cooperative automated driving involving a string of CAVs under uncertain traffic conditions using Vehicle-to-Vehicle (V2V) data. Based on an online learning-based driving dynamics prediction model, we predict the uncertain driving states of the vehicles preceding the controlled CAVs. With the predicted driving states of the preceding vehicles, we solve a constrained Finite-Horizon Optimal Control problem to predict the uncertain driving states of the controlled CAVs. To obtain the optimal acceleration or deceleration commands for the CAVs under uncertainties, we formulate a Distributionally Robust Stochastic Optimization (DRSO) model (i.e. a special case of data-driven optimization models under moment bounds) with a Distributionally Robust Chance Constraint (DRCC). The predicted uncertain driving states of the immediately preceding vehicles and the controlled CAVs will be utilized in the safety constraint and the reference driving states of the DRSO-DRCC model. To solve the minimax program of the DRSO-DRCC model, we reformulate the relaxed dual problem as a Semidefinite Program (SDP) of the original DRSO-DRCC model based on the strong duality theory and the Semidefinite Relaxation technique. In addition, we propose two methods for solving the relaxed SDP problem. We use Next Generation Simulation (NGSIM) data to demonstrate the proposed model in numerical experiments. The experimental results and analyses demonstrate that the proposed model can obtain string-stable, robust, and safe longitudinal cooperative automated driving control of CAVs by proper settings, including the driving-dynamics prediction model, prediction horizon lengths, and time headways. Computational analyses are conducted to validate the efficiency of the proposed methods for solving the DRSO-DRCC model for real-time automated driving applications within proper settings.more » « less
- 
            null (Ed.)For energy-efficient Connected and Automated Vehicle (CAV) Eco-driving control on signalized arterials under uncertain traffic conditions, this paper explicitly considers traffic control devices (e.g., road markings, traffic signs, and traffic signals) and road geometry (e.g., road shapes, road boundaries, and road grades) constraints in a data-driven optimization-based Model Predictive Control (MPC) modeling framework. This modeling framework uses real-time vehicle driving and traffic signal data via Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications. In the MPC-based control model, this paper mathematically formulates location-based traffic control devices and road geometry constraints using the geographic information from High-Definition (HD) maps. The location-based traffic control devices and road geometry constraints have the potential to improve the safety, energy, efficiency, driving comfort, and robustness of connected and automated driving on real roads by considering interrupted flow facility locations and road geometry in the formulation. We predict a set of uncertain driving states for the preceding vehicles through an online learning-based driving dynamics prediction model. We then solve a constrained finite-horizon optimal control problem with the predicted driving states to obtain a set of Eco-driving references for the controlled vehicle. To obtain the optimal acceleration or deceleration commands for the controlled vehicle with the set of Eco-driving references, we formulate a Distributionally Robust Stochastic Optimization (DRSO) model (i.e., a special case of data-driven optimization models under moment bounds) with Distributionally Robust Chance Constraints (DRCC) with location-based traffic control devices and road geometry constraints. We design experiments to demonstrate the proposed model under different traffic conditions using real-world connected vehicle trajectory data and Signal Phasing and Timing (SPaT) data on a coordinated arterial with six actuated intersections on Fuller Road in Ann Arbor, Michigan from the Safety Pilot Model Deployment (SPMD) project.more » « less
- 
            null (Ed.)In this paper, we investigate the intersection traffic management for connected automated vehicles (CAVs). In particular, a decentralized autonomous intersection management scheme that takes into account both the traffic efficiency and scheduling flexibility is proposed, which adopts a novel intersection–vehicle model to check conflicts among CAVs in the entire intersection area. In addition, a priority-based collision-avoidance rule is set to improve the performance of traffic efficiency and shorten the delays of emergency CAVs. Moreover, a multi-objective function is designed to obtain the optimal trajectories of CAVs, which considers ride comfort, velocities of CAVs, fuel consumption, and the constraints of safety, velocity, and acceleration. Simulation results demonstrate that our proposed scheme can achieve good performance in terms of traffic efficiency and shortening the delays of emergency CAVs.more » « less
- 
            Imputing missing data is a critical task in data-driven intelligent transportation systems. During recent decades there has been a considerable investment in developing various types of sensors and smart systems, including stationary devices (e.g., loop detectors) and floating vehicles equipped with global positioning system (GPS) trackers to collect large-scale traffic data. However, collected data may not include observations from all road segments in a traffic network for different reasons, including sensor failure, transmission error, and because GPS-equipped vehicles may not always travel through all road segments. The first step toward developing real-time traffic monitoring and disruption prediction models is to estimate missing values through a systematic data imputation process. Many of the existing data imputation methods are based on matrix completion techniques that utilize the inherent spatiotemporal characteristics of traffic data. However, these methods may not fully capture the clustered structure of the data. This paper addresses this issue by developing a novel data imputation method using PARATUCK2 decomposition. The proposed method captures both spatial and temporal information of traffic data and constructs a low-dimensional and clustered representation of traffic patterns. The identified spatiotemporal clusters are used to recover network traffic profiles and estimate missing values. The proposed method is implemented using traffic data in the road network of Manhattan in New York City. The performance of the proposed method is evaluated in comparison with two state-of-the-art benchmark methods. The outcomes indicate that the proposed method outperforms the existing state-of-the-art imputation methods in complex and large-scale traffic networks.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    