skip to main content

Title: Rare Gems: Finding Lottery Tickets at Initialization
Large neural networks can be pruned to a small fraction of their original size, with little loss in accuracy, by following a time-consuming "train, prune, re-train" approach. Frankle & Carbin conjecture that we can avoid this by training lottery tickets, i.e., special sparse subnetworks found at initialization, that can be trained to high accuracy. However, a subsequent line of work presents concrete evidence that current algorithms for finding trainable networks at initialization, fail simple baseline comparisons, e.g., against training random sparse subnetworks. Finding lottery tickets that train to better accuracy compared to simple baselines remains an open problem. In this work, we resolve this open problem by proposing Gem-Miner which finds lottery tickets at initialization that beat current baselines. Gem-Miner finds lottery tickets trainable to accuracy competitive or better than Iterative Magnitude Pruning (IMP), and does so up to 19x faster.
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
2003129
Publication Date:
NSF-PAR ID:
10395564
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Sponsoring Org:
National Science Foundation
More Like this
  1. Pruning the parameters of deep neural networks has generated intense interest due to potential savings in time, memory and energy both during training and at test time. Recent works have identified, through an expensive sequence of training and pruning cycles, the existence of winning lottery tickets or sparse trainable subnetworks at initialization. This raises a foundational question: can we identify highly sparse trainable subnetworks at initialization, without ever training, or indeed without ever looking at the data? We provide an affirmative answer to this question through theory driven algorithm design. We first mathematically formulate and experimentally verify a conservation law that explains why existing gradient-based pruning algorithms at initialization suffer from layer-collapse, the premature pruning of an entire layer rendering a network untrainable. This theory also elucidates how layer-collapse can be entirely avoided, motivating a novel pruning algorithm Iterative Synaptic Flow Pruning (SynFlow). This algorithm can be interpreted as preserving the total flow of synaptic strengths through the network at initialization subject to a sparsity constraint. Notably, this algorithm makes no reference to the training data and consistently competes with or outperforms existing state-of-the-art pruning algorithms at initialization over a range of models (VGG and ResNet), datasets (CIFAR-10/100 and Tinymore »ImageNet), and sparsity constraints (up to 99.99 percent). Thus our data-agnostic pruning algorithm challenges the existing paradigm that, at initialization, data must be used to quantify which synapses are important.« less
  2. In natural language processing (NLP), enormous pre-trained models like BERT have become the standard starting point for training on a range of downstream tasks, and similar trends are emerging in other areas of deep learning. In parallel, work on the lottery ticket hypothesis has shown that models for NLP and computer vision contain smaller matching subnetworks capable of training in isolation to full accuracy and transferring to other tasks. In this work, we combine these observations to assess whether such trainable, transferrable subnetworks exist in pre-trained BERT models. For a range of downstream tasks, we indeed find matching subnetworks at 40% to 90% sparsity. We find these subnetworks at (pre-trained) initialization, a deviation from prior NLP research where they emerge only after some amount of training. Subnetworks found on the masked language modeling task (the same task used to pre-train the model) transfer universally; those found on other tasks transfer in a limited fashion if at all. As large-scale pre-training becomes an increasingly central paradigm in deep learning, our results demonstrate that the main lottery ticket observations remain relevant in this context.
  3. Graph Convolutional Networks (GCNs) have emerged as the state-of-the-art deep learning model for representation learning on graphs. However, it remains notoriously challenging to train and inference GCNs over large graph datasets, limiting their application to large real-world graphs and hindering the exploration of deeper and more sophisticated GCN graphs. This is because as the graph size grows, the sheer number of node features and the large adjacency matrix can easily explode the required memory and data movements. To tackle the aforementioned challenges, we explore the possibility of drawing lottery tickets when sparsifying GCN graphs, i.e., subgraphs that largely shrink the adjacency matrix yet are capable of achieving accuracy comparable to or even better than their full graphs. Specifically, we for the first time discover the existence of graph early-bird (GEB) tickets that emerge at the very early stage when sparsifying GCN graphs, and propose a simple yet effective detector to automatically identify the emergence of such GEB tickets. Furthermore, we advocate graph-model co-optimization and develop a generic efficient GCN early-bird training framework dubbed GEBT that can significantly boost the efficiency of GCN training by (1) drawing joint early-bird tickets between the GCN graphs and models and (2) enabling simultaneously sparsificationmore »of both the GCN graphs and models. Experiments on various GCN models and datasets consistently validate our GEB finding and the effectiveness of our GEBT, e.g., our GEBT achieves up to 80.2% ~ 85.6% and 84.6% ~ 87.5% savings of GCN training and inference costs while offering a comparable or even better accuracy as compared to state-of-the-art methods. Our source code and supplementary appendix are available at https://github.com/RICE-EIC/Early-Bird-GCN.« less
  4. (Frankle & Carbin, 2019) shows that there exist winning tickets (small but critical subnetworks) for dense, randomly initialized networks, that can be trained alone to achieve comparable accuracies to the latter in a similar number of iterations. However, the identification of these winning tickets still requires the costly train-prune-retrain process, limiting their practical benefits. In this paper, we discover for the first time that the winning tickets can be identified at the very early training stage, which we term as Early-Bird (EB) tickets, via low-cost training schemes (e.g., early stopping and low-precision training) at large learning rates. Our finding of EB tickets is consistent with recently reported observations that the key connectivity patterns of neural networks emerge early. Furthermore, we propose a mask distance metric that can be used to identify EB tickets with low computational overhead, without needing to know the true winning tickets that emerge after the full training. Finally, we leverage the existence of EB tickets and the proposed mask distance to develop efficient training methods, which are achieved by first identifying EB tickets via low-cost schemes, and then continuing to train merely the EB tickets towards the target accuracy. Experiments based on various deep networks andmore »datasets validate: 1) the existence of EB tickets and the effectiveness of mask distance in efficiently identifying them; and 2) that the proposed efficient training via EB tickets can achieve up to 5.8x ~ 10.7x energy savings while maintaining comparable or even better accuracy as compared to the most competitive state-of-the-art training methods, demonstrating a promising and easily adopted method for tackling cost-prohibitive deep network training.« less
  5. The main objective of Personalized Tour Recommendation (PTR) is to generate a sequence of point-of-interest (POIs) for a particular tourist, according to the user-specific constraints such as duration time, start and end points, the number of attractions planned to visit, and so on. Previous PTR solutions are based on either heuristics for solving the orienteering problem to maximize a global reward with a specified budget or approaches attempting to learn user visiting preferences and transition patterns with the stochastic process or recurrent neural networks. However, existing learning methodologies rely on historical trips to train the model and use the next visited POI as the supervised signal, which may not fully capture the coherence of preferences and thus recommend similar trips to different users, primarily due to the data sparsity problem and long-tailed distribution of POI popularity. This work presents a novel tour recommendation model by distilling knowledge and supervision signals from the trips in a self-supervised manner. We propose Contrastive Trajectory Learning for Tour Recommendation (CTLTR), which utilizes the intrinsic POI dependencies and traveling intent to discover extra knowledge and augments the sparse data via pre-training auxiliary self-supervised objectives. CTLTR provides a principled way to characterize the inherent data correlationsmore »while tackling the implicit feedback and weak supervision problems by learning robust representations applicable for tour planning. We introduce a hierarchical recurrent encoder-decoder to identify tourists’ intentions and use the contrastive loss to discover subsequence semantics and their sequential patterns through maximizing the mutual information. Additionally, we observe that a data augmentation step as the preliminary of contrastive learning can solve the overfitting issue resulting from data sparsity. We conduct extensive experiments on a range of real-world datasets and demonstrate that our model can significantly improve the recommendation performance over the state-of-the-art baselines in terms of both recommendation accuracy and visiting orders.« less